精英家教网 > 初中数学 > 题目详情

【题目】如图,明亮同学在点A处测得大树顶端C的仰角为36°,斜坡AB的坡角为30°,沿在同一剖面的斜坡AB行走16米至坡顶B处,然后再沿水平方向行走6.4米至大树脚底点D处,那么大树CD的高度约为多少米?)(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,≈1.7).

【答案】大树CD的高度约为6.6米.

【解析】

BFAEF,则FE=BD=6.4米,DE=BF,设BF=x米,则AF=AF=x米,在RtABF中,由勾股定理得出方程,解方程求出DE=BF=8米,AF≈13.6米,得出AE的长度,在RtACE中,由三角函数求出CE,即可得出结果.

BFAEF,如图所示:

FE=BD=6.4米,DE=BF,

∵斜坡AB的坡角为30°,

AF=BF,

BF=x米,则AF=x米,

RtABF中,由勾股定理得:x2+(x)2=162

解得:x=8,

DE=BF=8米,AF≈13.6米,

AE=AF+FE=20米,

RtACE中,CE=AEtan36°≈20×0.73=14.6米,

CD=CE﹣DE=14.6﹣8=6.6米.

故大树CD的高度约为6.6米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,D,E,F分别是ABC各边的中点,下列说法中错误的是( )

A. ABCDEF是相似形 B. ABCAEF是位似图形 C. EFAD互相平分 D. AD平分∠BAC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线经过点A(0,3),B(3,0),C(4,3).

(1)求抛物线的函数表达式;

(2)求抛物线的顶点坐标和对称轴;

(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图中阴影部分).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为ABCD四个等级.请根据两幅统计图中的信息回答下列问题:

1)本次抽样调查共抽取了多少名学生?

2)求测试结果为C等级的学生数,并补全条形图;

3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?

4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,BD⊥DC,BD=DC,CE平分∠BCD,交AB于点E,交BD于点H,EN∥DCBD于点N.下列结论:

①BH=DH;②CH=(+1)EH;③其中正确的是(  )

A. ①② B. ②③ C. ①③ D. ①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB=8,CD=2,求EC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,求该船航行的距离(即AB的长)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在四边形ABCD中,EFGH分别是BCADBDAC的中点.

①求证:EFGH互相平分;

②当四边形ABCD的边满足____________条件时,EFGH(不必证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四个半圆彼此相外切,它们的圆心都在x轴的正半轴上并且与直线y=x相切,设半圆C1、C2、C3、C4的半径分别是r1、r2、r3、r4则当r1=1时,r4=(  )

A. 3 B. 32 C. 33 D. 34

查看答案和解析>>

同步练习册答案