精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线经过点A(0,3),B(3,0),C(4,3).

(1)求抛物线的函数表达式;

(2)求抛物线的顶点坐标和对称轴;

(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图中阴影部分).

【答案】解:(1)抛物线经过点A(0,3),B(3,0),C(4,3),

,解得

抛物线的函数表达式为

(2)

抛物线的顶点坐标为(2,﹣1),对称轴为直线x=2。

(3)如图,抛物线的顶点坐标为(2,﹣1),PP′=1。

又由平移的性质知,阴影部分的面积等于平行四边形A′APP′的面积,

而平行四边形A′APP′的面积=1×2=2。

阴影部分的面积=2。

【解析】

试题分析:(1)把点A、B、C代入抛物线解析式利用待定系数法求解即可。

(2)把抛物线解析式整理成顶点式形式,然后写出顶点坐标与对称轴即可。

(3)根据顶点坐标求出向上平移的距离,再根据阴影部分的面积等于平行四边形的面积,列式进行计算即可得解。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线与坐标轴分别交于点,与直线交于点是线段上的动点,连接,若是等腰三角形,则的长为___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数的图象经过第一、二、三象限,且与反比例函数图象相交于两点,与轴交于点,与轴交于点 且点横坐标是点纵坐标的2倍.

1)求反比例函数的解析式;

2)设点横坐标为 面积为

的函数关系式,并求出自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABBCAE平分∠BADBC于点EAEDE,∠1+2=90°MN分别是BACD延长线上的点,∠EAM和∠EDN的平分线交于点F,下列结论:①ABCD;②∠AEB+ADC=180°;③DE平分∠ADC;④∠F为定值.其中结论正确的有(

A. 4B. 1C. 2D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为了测量出楼房AC的高度,从距离楼底C60米的点D(点D与楼底C在同一水平上)出发,沿斜面坡度为i=l 的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53,求楼房AC的高度(参考数据:sin53=, cos53=, tan53= ≈1.732,结果精确到0.1米)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AEBD于E,CFBD于F,连结AF,CE.求证:四边形AECF是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程x2+2k+1x+k2+1=0有两个不等实根x1x2

1)求实数k的取值范围

2)若方程两实根x1x2满足x1+x2=﹣x1x2k的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线轴,轴分别交于点,点,在第一象限内有一动点在反比例函数上,由点轴,轴所作的垂线(垂足为)分别与直线相交于点,点,当点运动时,矩形的面积为定值

(1)求的度数;

(2)求反比例函数解析式.

(3)求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC为数轴上三点,若点CA的距离是点CB的距离2倍,我们就称点C是(AB)的好点.例如,如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(AB)的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(AB)的好点,但点D是(BA)的好点.

知识运用:如图2MN为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4

1)数      所表示的点是(MN)的好点;

2)如图3AB为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止.当t为何值时,PAB中恰有一个点为其余两点的好点?

查看答案和解析>>

同步练习册答案