精英家教网 > 初中数学 > 题目详情

【题目】关于x的一元二次方程x2+2k+1x+k2+1=0有两个不等实根x1x2

1)求实数k的取值范围

2)若方程两实根x1x2满足x1+x2=﹣x1x2k的值

【答案】(1);(2)2.

【解析】试题分析:(1)根据根与系数的关系得出△>0,代入求出即可;
(2)根据根与系数的关系得出x1+x2=-(2k+1),x1x2=k2+1,根据x1+x2=-x1x2得出-(2k+1)=-(k2+1),求出方程的解,再根据(1)的范围确定即可.

试题解析:(1)∵原方程有两个不相等的实数根,
∴△=2k+12-4k2+1)>0
解得:k
即实数k的取值范围是k
2)∵根据根与系数的关系得:x1+x2=-2k+1),x1x2=k2+1
又∵方程两实根x1x2满足x1+x2=-x1x2
-2k+1=-k2+1),
解得:k1=0k2=2
k
k只能是2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中记载:以绳测井,若将绳三折测之,绳多4尺,若将绳四折测之,绳多1尺,绳长井深各几何?

译文:用绳子测水井深度,如果将绳子折成三等份,井外余绳4尺;如果将绳子折成四等份,井外余绳1尺.问绳长、井深各是多少尺?

设井深为x尺,根据题意列方程,正确的是(  )

A. 3(x+4)=4(x+1) B. 3x+4=4x+1

C. 3(x﹣4)=4(x﹣1) D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,若∠DAE=∠E,∠B=∠D,那么AB∥DC吗?请在下面的解答过程中填空或在括号内填写理由.

解:理由如下:

∵∠DAE=∠E,________

______∥BE,________

∴∠D=∠DCE.________

∵∠B=∠D,________

∴∠B=______.(等量代换)

____________,(同位角相等,两直线平行)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各式中:

3x=﹣4系数化为1x=﹣

52x移项得x52

去分母得22x1)=1+3x3);

22x1)﹣3x3)=1去括号得4x23x91

其中正确的个数有(  )

A. 0 B. 1 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b与反比例函数y= 的图象交于A(1,4),B(4,n)两点.
(1)求反比例函数的解析式;
(2)求一次函数的解析式;
(3)点P是x轴上的一动点,当PA+PB最小时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数y=kx+b与函数y= 在同一坐标系中的大致图象正确的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1 , 将C1向右平移得C2 , C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是(
A.﹣2<m<
B.﹣3<m<﹣
C.﹣3<m<﹣2
D.﹣3<m<﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,正方形ABCD的对角线ACBD相交于点OEAC上一点,连接EB,过点AAMBE,垂足为MAMBD相交于F.

(1)直接写出线段OEOF的数量关系;

(2)如图2,若点EAC的延长线上,过点AAMBE ,AMDB的延长线于点F,其他条件不变.问(1)中的结论还成立吗?如果成立,请给出证明;如果不成立,说明理由;

(3)如图3,当BC=CE时,求∠EAF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在□ABCD中,∠ABCBCD的平分线分别交AD于点EFBECF相交于点G

(1)求证:BECF

(2)若AB=aCF=b,写出求BE的长的思路

查看答案和解析>>

同步练习册答案