【题目】如图1,正方形ABCD的对角线AC,BD相交于点O,E是AC上一点,连接EB,过点A作AM⊥BE,垂足为M,AM与BD相交于F.
(1)直接写出线段OE与OF的数量关系;
(2)如图2,若点E在AC的延长线上,过点A作AM⊥BE ,AM交DB的延长线于点F,其他条件不变.问(1)中的结论还成立吗?如果成立,请给出证明;如果不成立,说明理由;
(3)如图3,当BC=CE时,求∠EAF的度数.
【答案】(1) OE=OF; (2) OE=OF仍然成立,理由见解析;(3)67.5°.
【解析】(1)根据正方形的性质利用ASA判定△AOF≌△BOE,根据全等三角形的对应边相等得到OE=OF;
(2)类比(1)的方法证得同理得出结论成立;
(3)由BC=CE, 可证AB=BF,从而∠F=∠FAB=∠ABD=22.5°,然后根据∠EAF=∠FAB+∠BAO计算即可.
(1)OE=OF;
(2)OE=OF仍然成立,理由是:
由正方形ABCD对角线垂直得,∠BOC=90°,
∵AM⊥BE ∴∠BMF=90°,
∴∠BOC=∠BMF.
∵∠MBF=∠OBE,
∴∠F=∠E,
又∵AO=BO,
∴△AOF≌△BOE,
∴OE=OF;
(3)由(2)得OE=OF,且OB=OC,则BF=CE,
∵BC=CE,
∴AB=BF,
∴∠F=∠FAB=∠ABD=22.5°,
又∵∠BAO=45°,
∴∠EAF=∠FAB+∠BAO=22.5°+45°=67.5°.
科目:初中数学 来源: 题型:
【题目】像(+2)(﹣2)=1、=a(a≥0)、(+1)(﹣1)=b﹣1(b≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如,与, +1与﹣1,2+3与2﹣3等都是互为有理化因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:
(1)化简:;
(2)计算:;
(3)比较与的大小,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1、x2.
(1)求实数k的取值范围.
(2)若方程两实根x1、x2满足x1+x2=﹣x1x2,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A、B两地相距216千米,甲、乙分别在A、B两地,若甲骑车的速度为15千米/时,乙骑车的速度为12千米/时。.
(1)甲、乙同时出发,背向而行,问几小时后他们相距351千米?
(2)甲、乙相向而行,甲出发三小时后乙才出发,问乙出发几小时后两人相遇?
(3)甲、乙相向而行,要使他们相遇于AB的中点,乙要比甲先出发几小时?
(4)甲、乙同时出发,相向而行,甲到达B处,乙到达A处都分别立即返回,几小时后相遇?相遇地点距离A有多远?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解方程
①(x﹣3)﹣3(3x﹣1)=1
②老师在黑板上出了一道解方程的题=1﹣,小明马上举手,要求到黑板上做,他是这样做的:
4(2x﹣1)=1﹣3(x+2)…①
8x﹣4=1﹣3x﹣6…②
8x+3x=1﹣6+4…③
11x=﹣1…④
x=﹣…⑤
老师说:小明解一元一次方程的一般步骤都知道却没有掌握好,因此解题时有一步出现了错误,请你指出他错在那一步(填编号),并写出正确的解答过程.
=1﹣
③当m为何值时,关于x的方程5m+3x=1+x的解比关于x的方程2x+m=3m的解小2?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长方形ABCD中,AB=14cm,AD=8cm,动点P沿AB边从点A开始,向点B以1cm/s的速度运动;动点Q从点D开始沿DA→AB边,向点B以2cm/s的速度运动.P,Q同时开始运动,当点Q到达B点时,点P和点Q同时停止运动,用t(s)表示运动的时间.
(1)当点Q在DA边上运动时,t为何值,使AQ=AP?
(2)当t为何值时,AQ+AP等于长方形ABCD周长的?
(3)当t为何值时,点Q能追上点P?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,三角板ABC的两直角边AC,BC的长分别是40cm和30cm,点G在斜边AB上,且BG=30cm,将这个三角板以G为中心按逆时针旋转90°,至△A′B′C′的位置,那么旋转后两个三角板重叠部分(四边形EFGD)的面积为cm2 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com