精英家教网 > 初中数学 > 题目详情

【题目】1)如图 1,在平行四边形中,点是对角线 的中点,过点的直线分别交于点若平行四边形 的面积是 8,则四边形 的面积是___________

2)如图 2,在菱形中,对角线相交于点 O,过点 O 的直线分别交于点,若,求四边形 的面积.

3)如图 3,在中,,延长到点,使,连结,若 ,则 的面积是____________

【答案】14;(2;(33

【解析】

1)首先根据平行四边形的性质可得ADBCOA=OC.根据平行线的性质可得∠EAO=FCO,∠AEO=CFO,进而可根据AAS定理证明△AEO≌△CFO,再根据全等三角形的性质可得结论;

(2)根据菱形的性质得到ADBCAO=CO=AC=2.5BO=BD=5,根据全等三角形的判定定理得到△AOE≌△COF,由于ACBD,于是得到结果;

(3)延长ACE使CE=AC=3,根据全等三角形的判定定理得到△ABC≌△CDE,由全等三角形的性质得到∠E=BAC=90°,根据勾股定理得到 ,即可得到结论.

1)∵四边形 是平行四边形,

AOE COF

2)∵四边形 是菱形,

3)如图,延长 E 使,连结 DE

,

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线yx22mx+m21y轴交于点C

1)试用含m的代数式表示抛物线的顶点坐标;

2)将抛物线yx22mx+m21沿直线y=﹣1翻折,得到的新抛物线与y轴交于点D.若m0CD8,求m的值;

3)已知A2k0),B0k),在(2)的条件下,当线段AB与抛物线yx22mx+m21只有一个公共点时,直接写出k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线与反比例函数的图象交于两点,,则的值为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,ABC中,∠C=90°BC=8cmACAB=35,点P从点B出发沿BC向点C2cm/s的速度移动,点Q从点C出发沿CA向点A1cm/s的速度移动,如果PQ分别从BC同时出发:

1)经过多少秒后,CPQ的面积为8cm

2)经过多少秒时,以CPQ为顶点的三角形恰与ABC相似?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,分别以RtABC的直角边AC,斜边AB为边向外作等边三角形△ACD和△ABEFAB的中点,连接DFEF,∠ACB90°,∠ABC30°.则以下4个结论:①ACDF;②四边形BCDF为平行四边形;③DA+DFBE;④其中,正确的 是(  )

A.只有①②B.只有①②③C.只有③④D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%

1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.

2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?

3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了迎接体育中考,初三7班的体育老师对全班48名学生进行了一次体能模拟测试,得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格,成绩达到9分以上(包括9分)为优秀,这次模拟测试中男、女生全部成绩分布的条形统计图如下

1)请补充完成下面的成绩统计分析表:

平均分

方差

中位数

合格率

优秀率

男生

6.9

2.4

______

91.7%

16.7%

女生

______

1.3

______

83.3%

8.3%

2)男生说他们的合格率、优秀率均高于女生,所以他们的成绩好于女生,但女生不同意男生的说法,认为女生的成绩要好于男生,请给出两条支持女生观点的理由;

3)体育老师说,咱班的合格率基本达标,但优秀率太低,我们必须加强体育锻炼,两周后的目标是:全班优秀率达到50%.如果女生新增优秀人数恰好是男生新增优秀人数的两倍,那么男、女生分别新增多少优秀人数才能达到老师的目标?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2017江西省)如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的视线角”α约为20°,而当手指接触键盘时,肘部形成的手肘角”β约为100°.图2是其侧面简化示意图,其中视线AB水平,且与屏幕BC垂直.

(1)若屏幕上下宽BC=20cm,科学使用电脑时,求眼睛与屏幕的最短距离AB的长;

(2)若肩膀到水平地面的距离DG=100cm,上臂DE=30cm,下臂EF水平放置在键盘上,其到地面的距离FH=72cm.请判断此时β是否符合科学要求的100°?

(参考数据:sin69°≈,cos21°≈,tan20°≈,tan43°≈,所有结果精确到个位)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),在平面直角坐标系中,直线交坐标轴于AB两点,过点C0)作CDABD,交轴于点E.且△COE≌△BOA.

1)求B点坐标为 ;线段OA的长为

2)确定直线CD解析式,求出点D坐标;

3)如图2,点M是线段CE上一动点(不与点CE重合),ONOMAB于点N,连接MN.

①点M移动过程中,线段OMON数量关系是否不变,并证明;

②当△OMN面积最小时,求点M的坐标和△OMN面积.

查看答案和解析>>

同步练习册答案