【题目】如图所示,△ABC中,∠C=90°,BC=8cm,AC:AB=3:5,点P从点B出发沿BC向点C以2cm/s的速度移动,点Q从点C出发沿CA向点A以1cm/s的速度移动,如果P、Q分别从B、C同时出发:
(1)经过多少秒后,△CPQ的面积为8cm?
(2)经过多少秒时,以C、P、Q为顶点的三角形恰与△ABC相似?
【答案】(1)不论经过多少秒后,△CPQ的面积都不能为8cm2;(2)2.4秒或秒
【解析】
(1)设AC=3x,AB=5x,根据勾股定理列出方程即可求出AC和AB,设经过t秒后,△CPQ的面积为8cm2,然后用t表示出PC和CQ,根据三角形的面积列方程即可求出结论;
(2)设经过x秒时,以C、P、Q为顶点的三角形恰与△ABC相似,根据有两组对应边成比例及其夹角相等的两个三角形相似,列出比例式,即可求出结论.
解:设AC=3x,AB=5x,由勾股定理得:AB2=AC2+BC2,
∴(3x)2+82=(5x)2,
解得:x=2,
∴AC=6,AB=10,
设经过t秒后,△CPQ的面积为8cm2, PC=8-2t,CQ=t,
PC×CQ=8即×(8-2t)×t=8
解得:此方程无解,
答:不论经过多少秒后,△CPQ的面积都不能为8cm2.
(2)解:设经过x秒时,以C、P、Q为顶点的三角形恰与△ABC相似,
∵∠C=∠C=90°,
∴要使以C、P、Q为顶点的三角形恰与△ABC相似,具备或=就行,代入得:或,
解得:x=或x=,
答:经过秒或秒时,以C、P、Q为顶点的三角形恰与△ABC相似.
科目:初中数学 来源: 题型:
【题目】设是任意两个不等实数,我们规定:满足不等式的实数的所有取值的全体叫做闭区间,表示为.对于一个函数,如果它的自变量与函数值满足:当时,有,我们就称此函数是闭区间上的“闭函数”.如函数,当时,;当时,,即当时,有,所以说函数是闭区间上的“闭函数”
(1)反比例函数是闭区间上的“闭函数”吗?请判断并说明理由;
(2)若二次函数是闭区间上的“闭函数”,求的值;
(3)若一次函数是闭区间上的“闭函数”,求此函数的表达式(可用含的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米.第一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为千米/小时,根据题意可列方程________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点,在反比例函数的图象上,轴于点,轴于点,.
(1)求,的值和反比例函数的解析式;
(2)连接,是线段上一点,过点作轴的垂线,交反比例函数图象于点,若,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线与轴交于,两点(点在点的右侧),与轴交于点,已知,两点的坐标分别为,
(1)求抛物线的表达式;
(2)一动点从点出发,沿线段以每秒1个单位长度的速度向点运动,同时点从点出发,沿线段以每秒1个单位长度的速度向点运动,当点运动到点时,点随之停止运动.设运动时间为秒,当为何值时以、、为顶点的三角形与相似?
(3)若点是轴上一动点,点是抛物线上一动点,试判断是否存在以点,,,为顶点的四边形是平行四边形.若存在,请直接写出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,将线段AC绕着点C逆时针旋转得到线段CD,旋转角为α.
(1)如图,∠BAC=90°,α=45°,试求点D到边AB,AC的距离的比值;
(2)如图,∠BAC=100°,α=20°,连接AD,BD,求∠CBD的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图 1,在平行四边形中,点是对角线 的中点,过点的直线分别交于点若平行四边形 的面积是 8,则四边形 的面积是___________ .
(2)如图 2,在菱形中,对角线相交于点 O,过点 O 的直线分别交于点,若,求四边形 的面积.
(3)如图 3,在中,,延长到点,使,连结,若 ,则 的面积是____________ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,六边形ABCDEF∽六边形GHIJKL,相似比为2:1,则下列结论正确的是( )
A. ∠E=2∠K B. BC=2HI C. 六边形ABCDEF的周长=六边形GHIJKL的周长 D. S六边形ABCDEF=2S六边形GHIJKL
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com