精英家教网 > 初中数学 > 题目详情

【题目】在△ABC中,AB=AC,将线段AC绕着点C逆时针旋转得到线段CD,旋转角为α

1)如图,∠BAC=90°α=45°,试求点D到边ABAC的距离的比值;

2)如图,∠BAC=100°α=20°,连接ADBD,求∠CBD的大小.

【答案】1;(230°

【解析】

1)先找出点D的位置,求出BDF∽△CDE,得出比例式,再解直角三角形求出即可;

2)在BC上截取CF=AD,连接DF,求出DCF≌△BAD,根据全等三角形的性质得出∠ABD=CDFBD=DF,再求出答案即可.

1)如图1

∵∠BAC=90°AB=AC

∴∠B=C=45°

α=45°

∴点D恰好落在BC上,

过点DDEABDFAC,垂足分别为点EF,则有:∠BED=DFC=90°

∴△BDF∽△CDE

=

AB=AC=m,则有:

===-1

即点D到边ABAC的距离的比值为

2)如图2,在BC边上截取CF=AD,连接DF

∵∠BAC=100°AB=AC

∴∠ABC=BCA=40°

∵∠ACD=α=20°

∴∠DCB=20°

又∵AC=DC

∴∠CAD=80°

∴∠BAD=DCB=20°

DCFBAD

∴△DCF≌△BADSAS),

∴∠ABD=CDFBD=DF

∴∠DBC=DFB

∵∠DBC=ABC-ABD=40°-ABD,∠DFB=DCF+CDF=20°+CDF

20°+CDF=40°-ABD

2ABD=40°-20°

即∠ABD=10°

∴∠CBD=ABC-ABD=40°-10°=30°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知∠MON=120°,点AB分别在OMON上,且OA=OB=,将射线OM绕点O逆时针旋转得到OM′,旋转角为α),作点A关于直线OM′的对称点C,画直线BC交于OM′与点D,连接ACAD.有下列结论:

有下列结论:

①∠BDO + ACD = 90°;

②∠ACB 的大小不会随着的变化而变化;

③当 时,四边形OADC为正方形;

面积的最大值为

其中正确的是________________(把你认为正确结论的序号都填上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线ykx+b(k0),经过点(60),且与坐标轴围成的三角形的面积是9,与函数y(x0)的图象G交于AB两点.

(1)求直线的表达式;

(2)横、纵坐标都是整数的点叫作整点.记图象G在点AB之间的部分与线段AB围成的区域(不含边界)W

m2时,直接写出区域W内的整点的坐标   

若区域W内恰有3个整数点,结合函数图象,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】九年级某数学小组在学完《直角三角形的边角关系》这章后,决定用所学的知识设计遮阳篷(要求:遮阳篷既能最大限度地遮挡夏天炎热的阳光,又能最大限度地使冬天温暖的阳光射入室内).他们制定了设计方案,并利用课余时间完成了调查和实地测量.调查和测量项目及结果如下表:

项目

内容

课题

设计遮阳篷

测量示意图

如图,设计了垂直于墙面AC的遮阳篷CDAB表示窗户的高度.榆次区一年中,夏至这一天的正午时刻,太阳光线DA与遮阳篷CD的夹角∠ADC最大;冬至这一天的正午时刻,太阳光线DB与遮阳篷CD的夹角∠CDB最小.

调查数据

测量数据

根据上述方案及数据,求遮阳篷的长.

(结果精确到,参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,ABC中,∠C=90°BC=8cmACAB=35,点P从点B出发沿BC向点C2cm/s的速度移动,点Q从点C出发沿CA向点A1cm/s的速度移动,如果PQ分别从BC同时出发:

1)经过多少秒后,CPQ的面积为8cm

2)经过多少秒时,以CPQ为顶点的三角形恰与ABC相似?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为ABCD四个等级,并将结果绘制成图1的条形统计图和图2扇形统计图,但均不完整.请你根据统计图解答下列问题:

1)求参加比赛的学生共有多少名?并补全图1的条形统计图.

2)在图2扇形统计图中,m的值为_____,表示“D等级”的扇形的圆心角为_____度;

3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%

1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.

2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?

3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,正方形ABCD的顶点BCx轴的正半轴上,反比例函数在第一象限的图象经过顶点A(mm+3)和CD上的点E,且OB-CE=1。直线lO、E两点,则tanEOC的值为( )

A. B. 5 C. D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于反比例函数y,下列说法不正确的是(  )

A.图象分布在第一、三象限

B.x0时,yx的增大而减小

C.图象经过点(23

D.若点Ax1y1),Bx2y2)都在图象上,且x1x2,则y1y2

查看答案和解析>>

同步练习册答案