【题目】在平面直角坐标系xOy中,直线y=kx+b(k<0),经过点(6,0),且与坐标轴围成的三角形的面积是9,与函数y=(x>0)的图象G交于A,B两点.
(1)求直线的表达式;
(2)横、纵坐标都是整数的点叫作整点.记图象G在点A、B之间的部分与线段AB围成的区域(不含边界)为W.
①当m=2时,直接写出区域W内的整点的坐标 ;
②若区域W内恰有3个整数点,结合函数图象,求m的取值范围.
【答案】(1)y=﹣x+3;(2)①(3,1);②1≤m<2.
【解析】
(1)借助直线与x轴、y轴的交点坐标表示出直线与坐标轴围成的三角形的两条直角边长,利用面积是9,求出直线与y轴的交点为C(0,3),利用待定系数法求出直线的表达式;
(2)①先求出当m=2时,两函数图象的交点坐标,再结合图象找到区域W内的整点的坐标;②利用特殊值法求出图象经过点(1,1)、(2,1)时,反比例函数中m的值,结合图象得到在此范围内区域W内整点有3个,从而确定m的取值范围为1≤m<2.
如图:
(1)设直线与y轴的交点为C(0,b),
∵直线与两坐标轴围成的三角形的面积是9,
∴×6=9,b=±3.
∵k<0,
∴b=3,
∵直线y=kx+b经过点(6,0)和(0,3),
∴直线的表达式为y=﹣x+3;
(2)①当m=2时,两函数图象的交点坐标为方程组的解,
∴A(3﹣,),B(3+,),观察图象可得区域W内的整点的坐标为(3,1);
②当y=图象经过点(1,1)时,则 m=1,
当y=图象经过点(2,1)时,则 m=2,
∴观察图象可得区域W内的整点有3个时1≤m<2.
科目:初中数学 来源: 题型:
【题目】一幢楼的楼顶端挂着一幅长10米的宣传条幅AB,某数学兴趣小组在一次活动中,准备测量该楼的高度,但被建筑物FGHM挡住,不能直接到达楼的底部,他们在点D处测得条幅顶端A的仰角∠CDA=45°,向后退8米到E点,测得条幅底端B的仰角∠CEB=30°(点C,D,E在同一直线上,EC⊥AC).请你根据以上数据,帮助该兴趣小组计算楼高AC(结果精确到0.01米,参考数据:≈1.732,≈1.414).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,菱形的顶点在坐标原点,边在轴的负半轴上,,顶点的坐标为,反比例函数的图象与菱形对角线交于点,连接、,当轴时,点坐标为________,的值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),请你在图中画出这个新图象,当直线y=﹣x+m与新图象有4个交点时,m的取值范围是( )
A. ﹣<m<3 B. ﹣<m<2 C. ﹣2<m<3 D. ﹣6<m<﹣2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米.第一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为千米/小时,根据题意可列方程________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于平面直角坐标系上的点和,定义如下:若上存在两个点,使得点在射线上,且,则称为的依附点.
(1)当的半径为1时
①已知点,,,在点中,的依附点是______;
②点在直线上,若为的依附点,求点的横坐标的取值范围;
(2)的圆心在轴上,半径为1,直线与轴、轴分别交于点,若线段上的所有点都是的依附点,请求出圆心的横坐标的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点,在反比例函数的图象上,轴于点,轴于点,.
(1)求,的值和反比例函数的解析式;
(2)连接,是线段上一点,过点作轴的垂线,交反比例函数图象于点,若,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,将线段AC绕着点C逆时针旋转得到线段CD,旋转角为α.
(1)如图,∠BAC=90°,α=45°,试求点D到边AB,AC的距离的比值;
(2)如图,∠BAC=100°,α=20°,连接AD,BD,求∠CBD的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知双曲线(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com