精英家教网 > 初中数学 > 题目详情

【题目】一幢楼的楼顶端挂着一幅长10米的宣传条幅AB,某数学兴趣小组在一次活动中,准备测量该楼的高度,但被建筑物FGHM挡住,不能直接到达楼的底部,他们在点D处测得条幅顶端A的仰角∠CDA45°,向后退8米到E点,测得条幅底端B的仰角∠CEB30°(点CDE在同一直线上,ECAC).请你根据以上数据,帮助该兴趣小组计算楼高AC(结果精确到0.01米,参考数据:≈1.732≈1.414).

【答案】34.59

【解析】

ACx米,根据等腰三角形的性质用x表示出CD,根据正切的定义列式计算,得到答案.

解:设ACx米,则BC=(x10)米,

RtACD中,∠CDA=∠CAD45°

所以CDACx

RtECB中,CECD+DEx+8

所以tanCEB,即tan30°

解得,x≈34.59

答:楼高AC约为34.59米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.

(1)求A,B两种型号的机器人每小时分别搬运多少材料;

(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知点G在正方形ABCD的对角线AC上,GEBC,垂足为点EGFCD,垂足为点F

1)证明:四边形CEGF是正方形;

2)探究与证明:

将正方形CEGF绕点C顺时针方向旋转α角(0°<α45°),如图2所示,试探究线段AGBE之间的数量关系,并说明理由;

3)拓展与运用:

正方形CEGF绕点C顺时针方向旋转α角(0°<α45°),如图3所示,当BEF三点在一条直线上时,延长CGAD于点H,若AG6GH2,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,EAB中点,以BE为边作正方形BEFG,边EFCD于点H,在边BE上取点M使BMBC,作MNBGCD于点L,交FG于点N.欧儿里得在《几何原本》中利用该图解释了.现以点F为圆心,FE为半径作圆弧交线段DH于点P,连结EP,记△EPH的面积为S1,图中阴影部分的面积为S2.若点ALG在同一直线上,则的值为( )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,线段 AB 经过⊙O 的圆心, AC BD 分别与⊙O 相切于点 C D .若 AC =BD = 4 ,∠A=45°,则弧CD的长度为(

A.πB.2πC.2πD.4π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线ykx+b经过点A02),B(﹣40)和抛物线yx2

1)求直线的解析式;

2)将抛物线yx2沿着x轴向右平移,平移后的抛物线对称轴左侧部分与y轴交于点C,对称轴右侧部分抛物线与直线ykx+b交于点D,连接CD,当CDx轴时,求平移后得到的抛物线的解析式;

3)在(2)的条件下,平移后得到的抛物线的对称轴与x轴交于点EP为该抛物线上一动点,过点P作抛物线对称轴的垂线,垂足为Q,是否存在这样的点P,使以点EPQ为顶点的三角形与AOB相似?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C将线段AB分成两部分,若AC2BCAB(ACBC),则称点C为线段AB的黄金分割点.某数学兴趣小组在进行抛物线课题研究时,由黄金分割点联想到黄金抛物线,类似地给出黄金抛物线的定义:若抛物线yax2+bx+c,满足b2ac(b≠0),则称此抛物线为黄金抛物线.

()若某黄金抛物线的对称轴是直线x2,且与y轴交于点(08),求y的最小值;

()若黄金抛物线yax2+bx+c(a0)的顶点P(13),把它向下平移后与x轴交于A(+30)B(x00),判断原点是否是线段AB的黄金分割点,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠MON=120°,点AB分别在OMON上,且OA=OB=,将射线OM绕点O逆时针旋转得到OM′,旋转角为α),作点A关于直线OM′的对称点C,画直线BC交于OM′与点D,连接ACAD.有下列结论:

有下列结论:

①∠BDO + ACD = 90°;

②∠ACB 的大小不会随着的变化而变化;

③当 时,四边形OADC为正方形;

面积的最大值为

其中正确的是________________(把你认为正确结论的序号都填上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线ykx+b(k0),经过点(60),且与坐标轴围成的三角形的面积是9,与函数y(x0)的图象G交于AB两点.

(1)求直线的表达式;

(2)横、纵坐标都是整数的点叫作整点.记图象G在点AB之间的部分与线段AB围成的区域(不含边界)W

m2时,直接写出区域W内的整点的坐标   

若区域W内恰有3个整数点,结合函数图象,求m的取值范围.

查看答案和解析>>

同步练习册答案