【题目】如图,六边形ABCDEF∽六边形GHIJKL,相似比为2:1,则下列结论正确的是( )
A. ∠E=2∠K B. BC=2HI C. 六边形ABCDEF的周长=六边形GHIJKL的周长 D. S六边形ABCDEF=2S六边形GHIJKL
科目:初中数学 来源: 题型:
【题目】如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.
(1)求证:△ABQ≌△CAP;
(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.
(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,直接写出它的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】近几年来,为了缓减环境污染,某区加大了对煤改电的投资力度,该区居民在2015年有7500户完成煤改电,2017年有10800户完成了煤改电.
(1)求该区2015年至2017年完成煤改电户数的年平均增长率;
(2)2018年该区计划要完成煤改电的户数比2017年要有所增长,但增长率不超过15%,请求出2018年最多有多少户能完成煤改电.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数与轴交点的横坐标为,,则对于下列结论:
①当时,;
②方程有两个不相等的实数根,;
③.
其中正确的结论有________(只需填写序号即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=2点,D是AC中点,将△ABD沿BD所在直线折叠,使点A落在点P处,连接PC.
(1)写出BP,BD的长;
(2)求证:四边形BCPD是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,C是线段AB上一点,分别以AC.BC为边作等边△DAC和等边△ECB,AE与BD.CD相交于点F、G,CE与BD相交于点H.
(1)求证:△ACE≌△DCB;
(2)求∠AFB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一般地,“任意三角形都是自相似图形”,只要顺次连接三角形各边中点,则可将原三角形分割为四个都与它自己相似的小三角形.我们把(图乙)第一次顺次连接各边中点所进行的分割,称为阶分割(如图);把阶分割得出的个三角形再分别顺次连接它的各边中点所进行的分割,称为阶分割(如图)…,依此规则操作下去.阶分割后得到的每一个小三角形都是全等三角形(为正整数),设此时小三角形的面积为.请写出一个反映,,之间关系的等式________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
(1)直线BE与AD的位置关系是 ;BE与AD之间的距离是线段 的长;
(2) 若AD=6cm,BE=2cm.,求BE与AD之间的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com