精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数轴交点的横坐标为,则对于下列结论:

①当时,

②方程有两个不相等的实数根

其中正确的结论有________(只需填写序号即可).

【答案】①②

【解析】

直接根据抛物线与x轴的交点问题、根与系数的关系对各小题进行逐一分析即可.

①当x=-2时,y=4k-2×(2k-1)-1=4k-4k+2-1=1,故本小题正确;
②∵抛物线x轴交点的横坐标为x1、x2(x1<x2),
∴方程kx2+(2k-1)x-1=0有两个不相等的实数根x1、x2,故本小题正确;
③∵二次函数y=kx2+(2k-1)x-1x轴交点的横坐标为x1、x2(x1<x2),
∴x1+x2=

x2-x1= ,故本小题错误.

故答案是:①②.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点P是等边三角形ABC内一点,且PA=3PB=4PC=5,若将△APB绕着点B逆时针旋转后得到△CQB

(1)△BPQ 三角形;

(2)求PQ的长度;

(3)求∠APB的度数。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABC已知点D在线段AB的反向延长线上AC的中点F作线段GEDAC的平分线于EBCGAEBC

(1)求证ABC是等腰三角形

(2)AE=8,AB=10,GC=2BGABC的周长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)操作与探究:如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边ADE点上,折痕的一端G点在边BC上,BG=10.

①第一次折叠:当折痕的另一端点FAB边上时,如图1,求折痕GF的长;

②第二次折叠:当折痕的另一端点FAD边上时,如图2,证明四边形BGEF为菱形,并求出折痕GF的长.

(2)拓展延伸:通过操作探究发现在矩形纸片ABCD中,AB=5,AD=13.如图3所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ.当点A′BC边上移动时,折痕的端点P,Q也随之移动.若限定点P,Q分别在AB,AD边上移动,则点A′BC边上可移动的最大距离是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线上部分点的横坐标,纵坐标的对应值如下表:

小聪观察上表,得出下面结论:抛物线与轴的一个交点为函数的最大值为;③抛物线的对称轴是;④在对称轴左侧,增大而增大.其中正确有(

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于抛物线

对于抛物线

它与轴交点的坐标为________,与轴交点的坐标为________,顶点坐标为________.

在所给的平面直角坐标系中画出此时抛物线;

结合图象回答问题:当时,的取值范围是________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,六边形ABCDEF∽六边形GHIJKL,相似比为21,则下列结论正确的是( )

A. ∠E=2∠K B. BC=2HI C. 六边形ABCDEF的周长=六边形GHIJKL的周长 D. S六边形ABCDEF=2S六边形GHIJKL

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,光明中学一教学楼顶上竖有一块高为AB的宣传牌,点E和点D分别是教学楼底部和外墙上的一点(A,B,D,E在同一直线上),小红同学在距E点9米的C处测得宣传牌底部点B的仰角为67°,同时测得教学楼外墙外点D的仰角为30°,从点C沿坡度为1∶的斜坡向上走到点F时,DF正好与水平线CE平行.

(1)求点F到直线CE的距离(结果保留根号);

(2)若在点F处测得宣传牌顶部A的仰角为45°,求出宣传牌AB的高度(结果精确到0.01).(注:sin67°≈0.92,tan67°≈2.36,≈1.41,≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:E在△ABCAC边的延长线上,D点在AB边上,DEBC于点FDF=EFBD=CE。求证:△ABC是等腰三角形.

查看答案和解析>>

同步练习册答案