精英家教网 > 初中数学 > 题目详情
9.如图,矩形ABCD中,AD=10,AB=20,点P在边CD上,且与点C、D不重合,过点A作AP的垂线与CB的延长线相交于点Q,连接PQ,PQ的中点为M.
(1)求证:△ADP∽△ABQ;
(2)若△PCQ的面积为100,求DP长;
(3)若BM的长为3$\sqrt{5}$,求DP长.

分析 (1)根据矩形的性质得出∠D=∠ABC=90°,∠DAB=90°,求出∠QAB=∠DAP,∠ABQ=∠D,根据相似三角形的判定得出即可;
(2)设PD=x,则PC=DC-DP=20-x,根据相似三角形的性质得到BQ=2x,由△PCQ的面积为100列方程即可得到结论;
(3)作MN⊥QC,则∠QNM=∠QCD=90°,根据相似三角形的性质得到$\frac{MN}{PC}$=$\frac{QN}{QC}$=$\frac{QM}{QP}$=$\frac{1}{2}$,根据三角形的中位线的性质得到N为CQ的中点,由于PC=DC-DP=20-x根据勾股定理列方程即可得到结论.

解答 (1)证明:∵四边形ABCD是矩形,
∴∠D=∠ABC=90°,∠DAB=90°,
∴∠ABQ=90°=∠D,
∵AQ⊥AP,
∴∠QAP=∠DAB=90°,
∴∠DAP=∠QAB=90°-∠BAP,
即∠QAB=∠DAP,∠ABQ=∠D,
∴△ADP∽△ABQ;

(2)解:设PD=x,则PC=DC-DP=20-x,
∵△ADP∽△ABQ
∴$\frac{AD}{AB}$=$\frac{DP}{BQ}$,
∴$\frac{10}{20}$=$\frac{x}{BQ}$,
∴BQ=2x,
∵△PCQ的面积为100,
∴$\frac{1}{2}$(20-x)•(2x+10)=100,
∴x=15,
∴PD=15;

(3)解:作MN⊥QC,则∠QNM=∠QCD=90°,
又∵∠MQN=∠PQC
∴△MQN∽△PQC,
∴$\frac{MN}{PC}$=$\frac{QN}{QC}$=$\frac{QM}{QP}$=$\frac{1}{2}$,
∵∠C=∠MNQ=90°,
∴MN∥PC,
∵M为PQ的中点,
∴N为CQ的中点,
又∵PC=DC-DP=20-x
∴MN=$\frac{1}{2}$PC=$\frac{1}{2}$(20-x),QN=$\frac{1}{2}$QC=$\frac{1}{2}$(QB+10),
∵BQ=2x,
∵QN=$\frac{1}{2}$QC=$\frac{1}{2}$(QB+10)=$\frac{1}{2}$(2x+10)=x+5,
∴BN=QB-QN=2x-(x+5)=x-5,
在Rt△MBN中,由勾股定理得:BM2=MN2+BN2=[$\frac{1}{2}$(20-x)]2+(x-5)2
∵BM=3$\sqrt{5}$,
∴x=8,
∴PD=8.

点评 本题考查了矩形的性质,相似三角形的性质和判定,勾股定理的应用,能综合运用定理进行推理和计算是解此题的关键,题目比较好,难度偏大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

19.解一元一次不等式组$\left\{\begin{array}{l}{1+x>-2}\\{\frac{2x-1}{3}≤1}\end{array}\right.$,并在数轴上表示出其解集.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.不等式2x+3≤5的解集在数轴上表示正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.关于x的方程(a-2)x2-2ax+a+4=0有两个实数根,则a的取值范围为a≤4且a≠2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.观察下面依次排列的各数,按照规律写出后面的数及其他要求的数.
(1)-1,2,-3,4,-5,6,-7…第2015个数是(-1)nn;
(2)1,$\frac{1}{2}$,-$\frac{1}{3}$,-$\frac{1}{4}$,$\frac{1}{5}$,$\frac{1}{6}$,-$\frac{1}{7}$,-$\frac{1}{8}$,$\frac{1}{9}$,$\frac{1}{10}$…第100个数是-$\frac{1}{100}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.当y=-2时,代数式-y2-3的值是-7.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,AD⊥CD,CD⊥BC,AC平分∠BAD.
(1)求证:∠ACB=∠BAC;
(2)若∠B=80°,求∠DCA的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.把下列各式的分母有理化:
(1)$\frac{\sqrt{3}}{\sqrt{40}}$;
(2)$\frac{-3\sqrt{2}}{\sqrt{27}}$;
(3)$\frac{\sqrt{5}a}{\sqrt{10a}}$;
(4)$\frac{2{y}^{2}}{\sqrt{4xy}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.估算下列数的大小:
(1)$\root{3}{260}$(结果精确到1);
(2)$\sqrt{25.7}$(结果精确到0.1)

查看答案和解析>>

同步练习册答案