精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E,H分别在AB、AC上,已知BC=40cm,AD=30cm.
(1)求证:△AEH∽△ABC;
(2)求这个正方形的边长与周长.

【答案】
(1)解:∵四边形EFGH是正方形,

∴EH∥BC,

∴∠AEH=∠B,∠AHE=∠C,

∴△AEH∽△ABC


(2)解:如图,设AD与EH交于点M,

∵∠EFD=∠FEM=∠FDM=90°,

∴四边形EFDM是矩形,

∴EF=DM,

设正方形EFGH的边长为x,则DM=x,AM=30﹣x,

∵△AEH∽△ABC,

= ,即 =

解得x=

∴正方形EFGH的边长为 cm,周长为 cm.


【解析】(1)根据四边形EFGH是正方形,得到EH∥BC,进而得出∠AEH=∠B,∠AHE=∠C,即可判定△AEH∽△ABC;(2)设正方形EFGH的边长为x,则DM=x,AM=30﹣x,根据△AEH∽△ABC,得出 = ,即 = ,进而解得x= ,即可得出正方形的边长与周长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某书店老板去批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价20元出售,很快售完.由于该书畅销,第二次购书时,每本书批发价比第一次提高了25%,他用1800元所购该书数量比第一次多20本,又按定价售出全部图书.
(1)求该书原来每本的批发价;
(2)该老板这两次售书一共赚了多少钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:

小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如.善于思考的小明进行了以下探索:

(其中a、b、m、n均为整数),则有.

.这样小明就找到了一种把类似的式子化为平方式的方法。

请你仿照小明的方法探索并解决下列问题:(a,b,m,n均为正整数)

(1),用含m、n的式子分别表示a、b,得:a=___,b=___;

(2)当a=7,n=1时,填空:7+ =( +2

(3)若,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtACB中,∠ACB=90°,ABC的平分线BE和∠BAC的外角平分线AD相交于点P,分别交ACBC的延长线于E,D.过PPFADAC的延长线于点H,交BC的延长线于点F,连接AFDH于点G.则下列结论:①∠APB=45°;PF=PA;BD﹣AH=AB;DG=AP+GH.其中正确的是(  )

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,∠A=C=90°BEDF分别是∠ABCADC的平分线.

11与∠2有什么关系,为什么?

2BEDF有什么关系?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是(

A.点(0,3)
B.点(2,3)
C.点(5,1)
D.点(6,1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明要测量河内小岛B到河边公路AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=50米,求小岛B到公路AD的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A(a,b),B(c,0),|a-3|+(2b-c)2+=0.

(1)求点A,B的坐标

(2)如图,点Cx轴正半轴上一点,且OC=OA,点DOC的中点,连AC,AD,请探索AD+CDAC之间的大小关系,并说明理由;

(3)如图,过点AAE⊥y轴于E,Fx轴负半轴上一动点不与(-3,0)重合 ),GEF延长线上,以EG为一边作∠GEN=45°,过AAM⊥x轴,交EN于点M,连FM,当点Fx轴负半轴上移动时,式子的值是否发生变化?若变化,求出变化的范围;若不变化,请求出其值并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c).

(1)用这样的两个三角形构造成如图(2)的图形(B,E,C三点在一条直线上),利用这个图形,求证:

(2)a=1,b=2时,将其中一个直角三角形放入平面直角坐标系中(如图(3)),使直角顶点与原点重合,两直角边a,b分别与x轴、y轴重合.请在坐标轴上找一点C,使ABC为等腰三角形.

①写出一个满足条件的在x轴上的点的坐标:

②写出一个满足条件的在y轴上的点的坐标:

③满足条件的在y轴上的点共有

查看答案和解析>>

同步练习册答案