精英家教网 > 初中数学 > 题目详情
精英家教网如图,将矩形ABCD绕点A顺时针旋转90°后,得到矩形AB′C′D′,如果CD=2DA=2,那么CC′=
 
分析:矩形ABCD绕点A顺时针旋转90°得到矩形AB′C′D′,可知旋转中心为点A,旋转角∠CAC′=90°,根据对应点C、C′到旋转中心的距离相等可知,AC=AC′,先在Rt△ACD中用勾股定理求AC,再在Rt△CAC′中,利用勾股定理求CC′.
解答:解:由旋转的性质可知,∠CAC′=90°,AC=AC′,
Rt△ACD中,由勾股定理得,
AC=
AD2+CD2
=
12+22
=
5

在Rt△CAC′中,由勾股定理得,
CC′=
AC2+AC2
=
10
点评:本题考查了旋转的性质,勾股定理的运用,属于基础题,需要熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

4、如图,将矩形ABCD折叠,AE是折痕,点D恰好落在BC边上的点F处,量得∠BAF=50°,那么∠DEA等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,将矩形ABCD的BC边折起,使点B落在DC上的点F处得折痕AE,若∠DFA为40°,则∠EAF的度数是(  )
A、15°B、20°C、25°D、30°

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图,将矩形ABCD沿直线EF对折,点D恰好与BC边上的点H重合,∠GFP=62°,那么∠EHF的度数等于
56
°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将矩形ABCD绕C点顺时针旋转到矩形CEFG,点E在CD上,若AB=8,BC=6,则旋转过程中点A所经过的路径长为
.(结果不取近似值).

查看答案和解析>>

同步练习册答案