精英家教网 > 初中数学 > 题目详情

【题目】若实数 mn 满足m+nmn,且n≠0时,就称点 Pm)为完美点,若反比例函数y的图象上存在两个完美点AB,且 AB4,则 k的值为_____

【答案】

【解析】

首先得出完美点所在的函数解析式,进而利用韦达定理求出k的值,进而得出答案.

m+n=mnn≠0

+1=m,即=m-1

Pmm-1),

完美点”P在直线y=x-1上,设点AB坐标分别为(x1y1),(x2y2),

=x-1化简得x2-x-k=0

AB=4

|x1-x2|=2

由根与系数的关系得x1+x2=1x1x2=-k

∴(x1-x22=x1+x22-4x1x2=8

1+4k=8

解得:k=

此时x2-x-k=0的△>0

k=

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】有三张正面分别标有数字:-112的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.

(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;

(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(xy)落在双曲线上的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】水库大坝截面的迎水坡坡比(DEAE的长度之比)为10.6,背水坡坡比为12,大坝高DE=30米,坝顶宽CD=10米,求大坝的截面的周长和面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线与直线交于点O00),。点B是抛物线上OA之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点CE

1)求抛物线的函数解析式;

2)若点COA的中点,求BC的长;

3)以BCBE为边构造条形BCDE,设点D的坐标为(m,n),求m,n之间的关系式。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4 m.按照图中所示的直角坐标系,抛物线可以用y=x2+bx+c表示,且抛物线上的点COB的水平距离为3 m,到地面OA的距离为m.

(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;

(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?

(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数ykx+b的图象与反比例函数y的图象交于AB两点.

1)利用图中的条件,求反比例函数和一次函数的解析式.

2)求△AOB的面积.

3)根据图象直接写出使一次函数的值大于反比例函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).

请根据以上信息回答:

(1)本次参加抽样调查的居民有多少人?

(2)将两幅不完整的图补充完整;

(3)求扇形统计图中C所对圆心角的度数;

(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在平面直角坐标系中,已知点A(﹣12),B34).

1)画出ABO向上平移2个单位,再向左平移4个单位后所得的图形A′B′O′

2)写出ABO后的对应点A′B′O′的坐标;

3)求两次平移过程中OB共扫过的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图12分别是某款篮球架的实物图与示意图,已知ABBC于点B,底座BC的长为1米,底座BC与支架AC所成的角∠ACB60°,点H在支架AF上,篮板底部支架EHBCEFEH于点E,已知AH米,HF米,HE1米.

(1)求篮板底部支架HE与支架AF所成的角∠FHE的度数.

(2)求篮板底部点E到地面的距离.(结果保留根号)

查看答案和解析>>

同步练习册答案