【题目】(12分)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.
(1)求线段CD的长;
(2)设△CPQ的面积为S,求S与t之间的函数关系式,并确定在运动过程中是否存在某一时刻t,使得S△CPQ∶S△ABC=9∶100?若存在,求出t的值;若不存在,说明理由;
(3)当t为何值时,△CPQ为等腰三角形?
【答案】(1)4.8;(2)t=或t=3;(3)t=2.4秒或秒或秒.
【解析】试题分析:(1)利用勾股定理可求出AB长,再用等积法就可求出线段CD的长.
(2)过点P作PH⊥AC,垂足为H,通过三角形相似即可用t的代数式表示PH,从而可以求出S与t之间的函数关系式;利用=9:100建立t的方程,解方程即可解决问题.
(3)可分三种情况进行讨论:由CQ=CP可建立关于t的方程,从而求出t;由PQ=PC或QC=QP不能直接得到关于t的方程,可借助于等腰三角形的三线合一及三角形相似,即可建立关于t的方程,从而求出t.
试题解析:(1)如图1,∵∠ACB=90°,AC=8,BC=6,
∴AB=10.
∵CD⊥AB,
∴S△ABC=BC·AC=AB·CD.
∴CD===4.8.
∴线段CD的长为4.8;
(2)①过点P作PH⊥AC,垂足为H,如图2所示.
由题可知DP=t,CQ=t.
则CP=4.8﹣t.
∵∠ACB=∠CDB=90°,
∴∠HCP=90°﹣∠DCB=∠B.
∵PH⊥AC,
∴∠CHP=90°.
∴∠CHP=∠ACB.
∴△CHP∽△BCA.
∴.
∴.
∴PH= .
∴=CQ·PH=t·()= ;
②存在某一时刻t,使得=9:100.
∵=×6×8=24,且=9:100,
∴():24=9:100.
整理得:5t2﹣24t+27=0.
即(5t﹣9)(t﹣3)=0.
解得:t=或t=3.
∵0≤t≤4.8,
∴当t=秒或t=3秒时, =9:100;
(3)存在
①若CQ=CP,如图1,
则t=4.8﹣t.
解得:t=2.4.
②若PQ=PC,如图2所示.
∵PQ=PC,PH⊥QC,
∴QH=CH=QC=.
∵△CHP∽△BCA.
∴.
∴.
解得;t=.
③若QC=QP,
过点Q作QE⊥CP,垂足为E,如图3所示.
同理可得:t=.
综上所述:当t为2.4秒或秒或秒时,△CPQ为等腰三角形.
科目:初中数学 来源: 题型:
【题目】如图①,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.
(1)探究猜想:
①若∠A=20°,∠D=40°,则∠AED=
②猜想图①中∠AED,∠EAB,∠EDC的关系,并用两种不同的方法证明你的结论.
(2)拓展应用:
如图②,射线FE与l1 , l2交于分别交于点E、F,AB∥CD,a,b,c,d分别是被射线FE隔开的4个区域(不含边界,其中区域a,b位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(任写出两种,可直接写答案).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题中正确的是( )
A. 若两个多边形相似,则对应边的比相等
B. 若两个多边形相似,则对应角的比等于对应边的比
C. 若两个多边形的对应角相等,则这两个多边形相似
D. 若两个多边形的对应边的比相等,则这两个多边形相似
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD , E 是CB 延长线上一点,下列推理正确的是( )
A.如果∠1=∠2 ,那么AB∥CD
B.如果∠3=∠4 ,那么 AD∥BC
C.如果AD∥BC , 那么∠6+∠BAD=180°.
D.如果∠6+∠BCD=180°,那么AD∥BC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC上一动点,连结AD,将△ACD沿AD折叠,点C落在点C′,连结C′D交AB于点E,连结BC′.当△BC′D是直角三角形时,DE的长为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com