精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的弦,点C为半径OA的中点,过点C作CD⊥OA交弦AB于点E,连接BD,且DE=DB.
(1)判断BD与⊙O的位置关系,并说明理由;
(2)若CD=15,BE=10,tanA= ,求⊙O的直径.

【答案】
(1)证明:连接OB,

∵OB=OA,DE=DB,

∴∠A=∠OBA,∠DEB=∠ABD,

又∵CD⊥OA,

∴∠A+∠AEC=∠A+∠DEB=90°,

∴∠OBA+∠ABD=90°,

∴OB⊥BD,

∴BD是⊙O的切线


(2)解:如图,

过点D作DG⊥BE于G,

∵DE=DB,

∴EG= BE=5,

∵∠ACE=∠DGE=90°,∠AEC=∠GED,

∴∠GDE=∠A,

∴△ACE∽△DGE,

∴sin∠EDG=sinA= = ,即CE=13,

在Rt△ECG中,

∵DG= =12,

∵CD=15,DE=13,

∴DE=2,

∵△ACE∽△DGE,

∴AC= DG=

∴⊙O的直径2OA=4AD=


【解析】(1)连接OB,由圆的半径相等和已知条件证明∠OBD=90°,即可证明BD是⊙O的切线;(2)过点D作DG⊥BE于G,根据等腰三角形的性质得到EG= BE=5,由两角相等的三角形相似,△ACE∽△DGE,利用相似三角形对应角相等得到sin∠EDG=sinA= ,在Rt△EDG中,利用勾股定理求出DG的长,根据三角形相似得到比例式,代入数据即可得到结果. 此题考查了切线的判定,以及相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面上,七个边长为1的等边三角形,分别用①至⑦表示(如图).从④⑤⑥⑦组成的图形中,取出一个三角形,使剩下的图形经过一次平移,与①②③组成的图形拼成一个正六边形
(1)你取出的是哪个三角形?写出平移的方向和平移的距离;
(2)将取出的三角形任意放置在拼成的正六边形所在平面,问:正六边形没有被三角形盖住的面积能否等于 ?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:20160+2|1﹣sin30°|﹣( 1+

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】不等式组 的解集表示在数轴上,正确的是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是
①EF= OE;②S四边形OEBF:S正方形ABCD=1:4;③BE+BF= OA;④在旋转过程中,当△BEF与△COF的面积之和最大时,AE= ;⑤OGBD=AE2+CF2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.

(1)将△ABC向左平移6个单位长度得到得到△A1B1C1
(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2 , 请画出△A2B2C2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知扇形的半径为6cm,圆心角为150°,则此扇形的弧长是cm,扇形的面积是cm2(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题.
(1)将条形统计图补充完整;
(2)本次抽样调查的样本容量是
(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明的爸爸和妈妈分别驾车从家同时出发去上班,爸爸行驶到甲处时,看到前面路口时红灯,他立即刹车减速并在乙处停车等待,爸爸驾车从家到乙处的过程中,速度v(m/s)与时间t(s)的关系如图1中的实线所示,行驶路程s(m)与时间t(s)的关系如图2所示,在加速过程中,s与t满足表达式s=at2

(1)根据图中的信息,写出小明家到乙处的路程,并求a的值;
(2)求图2中A点的纵坐标h,并说明它的实际意义;
(3)爸爸在乙处等代理7秒后绿灯亮起继续前行,为了节约能源,减少刹车,妈妈驾车从家出发的行驶过程中,速度v(m/s)与时间t(s)的关系如图1中的折线O﹣B﹣C所示,行驶路程s(m)与时间t(s)的关系也满足s=at2 , 当她行驶到甲处时,前方的绿灯刚好亮起,求此时妈妈驾车的行驶速度.

查看答案和解析>>

同步练习册答案