精英家教网 > 初中数学 > 题目详情
11.定义:P、Q分别是两条线段a,b上任意一点,线段PQ长度的最小值叫做线段a与线段b的距离.已知,O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中四点.
(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离为2;当m=5,n=2时,如图2,线段BC与线段OA的距离(即线段AB的长)为$\sqrt{5}$;
(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.
(3)当m值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M,点D(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m值,使以A、M、H为顶点的三角形与△AOD相似?若存在,求出m值;若不存在,请说明理由.

分析 (1)理解新定义,按照新定义的要求求出两个距离值;
(2)如答图2所示,当点B落在⊙A上时,m的取值范围为2≤m≤6:
当4≤m≤6,显然线段BC与线段OA的距离等于⊙A半径,即d=2;
当2≤m<4时,作BN⊥x轴于点N,线段BC与线段OA的距离等于BN长;
(3)①在准确理解点M运动轨迹的基础上,画出草图,如答图3所示.由图形可以直观求出封闭图形的周长;
②如答图4所示,符合题意的相似三角形有三个,需要进行分类讨论,分别利用点的坐标关系以及相似三角形比例线段关系求出m的值.

解答 解:(1)当m=2,n=2时,
如题图1,线段BC与线段OA的距离(即线段BN的长)=2;
当m=5,n=2时,
B点坐标为(5,2),线段BC与线段OA的距离,即为线段AB的长,
如答图1,过点B作BN⊥x轴于点N,则AN=1,BN=2,
在Rt△ABN中,由勾股定理得:AB=$\sqrt{A{N}^{2}+B{N}^{2}}$=$\sqrt{{1}^{2}+{2}^{2}}$=$\sqrt{5}$;
故答案为:2,$\sqrt{5}$;

(2)如答图2所示,当点B落在⊙A上时,m的取值范围为2≤m≤6:
当4≤m≤6,显然线段BC与线段OA的距离等于⊙A半径,即d=2;
当2≤m<4时,作BN⊥x轴于点N,线段BC与线段OA的距离等于BN长,
ON=m,AN=OA-ON=4-m,在Rt△ABN中,由勾股定理得:
∴d=$\sqrt{{2}^{2}-(4-m)^{2}}$=$\sqrt{4-16+8m-{m}^{2}}$=$\sqrt{-{m}^{2}+8m-12}$.

(3)存在.
∵m≥0,n≥0,∴点M位于第一象限.
∵A(4,0),D(0,2),∴OA=2OD.
如答图4所示,相似三角形有三种情形:
(I)△AM1H1,此时点M纵坐标为2,点H在A点左侧.
如图,OH1=m+2,M1H1=2,AH1=OA-OH1=2-m,
由相似关系可知,M1H1=2AH1,即2=2(2-m),
∴m=1;
(II)△AM2H2,此时点M纵坐标为2,点H在A点右侧.
如图,OH2=m+2,M2H2=2,AH2=OH2-OA=m-2,
由相似关系可知,M2H2=2AH2,即2=2(m-2),
∴m=3;
(III)△AM3H3,此时点B落在⊙A上.
如图,OH3=m+2,AH3=OH3-OA=m-2,
过点B作BN⊥x轴于点N,则BN=M3H3=n,AN=m-4,
由相似关系可知,AH3=2M3H3,即m-2=2n  (1)
在Rt△ABN中,由勾股定理得:22=(m-4)2+n2  (2)
由(1)、(2)式解得:m1=$\frac{26}{5}$,m2=2,
当m=2时,点M与点A横坐标相同,点H与点A重合,故舍去,
∴m=$\frac{26}{5}$.
综上所述,存在m的值使以A、M、H为顶点的三角形与△AOD相似,m的取值为:1或3或$\frac{26}{5}$.

点评 本题考查了圆的相关性质、点的坐标、勾股定理等重要知识点,根据新定义得出线段之间距离是解决本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.分解因式
(1)-3ma3+6ma2-12ma
(2)6p(p+q)-4q(q+p)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,抛物线C1:y=ax2+bx+4与x轴交于A(-3,0),B两点,与y轴交于点C,点M(-$\frac{3}{2}$,5)是抛物线C1上一点,抛物线C2与抛物线C1关于y轴对称,点A、B、M关于y轴的对称点分别为点A′、B′、M′.
(1)求抛物线C1的解析式;
(2)过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,简单几何体的左视图是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.下列实数中最大的是(  )
A.$\root{3}{-8}$B.0C.($\frac{1}{3}$)-1D.|-$\sqrt{3}$|

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,已知平行四边形OABC的三个顶点A、B、C在以O为圆心的半圆上,过点C作CD⊥AB,分别交AB、AO的延长线于点D、E,AE交半圆O于点F,连接CF.
(1)判断直线DE与半圆O的位置关系,并说明理由;
(2)①求证:CF=OC;
②若半圆O的半径为12,求阴影部分的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.阅读材料:
在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=$\frac{{|A{x_0}+B{y_0}+C|}}{{\sqrt{{A^2}+{B^2}}}}$.
例如:求点P0(0,0)到直线4x+3y-3=0的距离.
解:由直线4x+3y-3=0知,A=4,B=3,C=-3,
∴点P0(0,0)到直线4x+3y-3=0的距离为d=$\frac{|4×0+3×0-3|}{{\sqrt{{4^2}+{3^2}}}}$=$\frac{3}{5}$.
根据以上材料,解决下列问题:
问题1:点P1(3,4)到直线y=-$\frac{3}{4}$x+$\frac{5}{4}$的距离为4;
问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=-$\frac{3}{4}$x+b相切,求实数b的值;
问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.将多项式mn2+2mn+m因式分解的结果是m(n+1)2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为(  )
A.20B.24C.28D.30

查看答案和解析>>

同步练习册答案