【题目】如图,在中,AD是BC边上的高,。
(1)求证:AC=BD
(2)若,求AD的长。
【答案】(1)证明见解析;(2)8
【解析】
(1)由于tanB=cos∠DAC,所以根据正切和余弦的概念证明AC=BD;
(2)设AD=12k,AC=13k,然后利用题目已知条件即可解直角三角形.
(1)证明:∵AD是BC上的高,
∴AD⊥BC,
∴∠ADB=90°,∠ADC=90°,
在Rt△ABD和Rt△ADC中,
∵tanB=,cos∠DAC=,
又∵tanB=cos∠DAC,
∴=,
∴AC=BD;
(2)在Rt△ADC中,sinC=,
故可设AD=12k,AC=13k,
∴CD==5k,
∵BC=BD+CD,又AC=BD,
∴BC=13k+5k=18k,
由已知BC=12,
∴18k=12,
∴k=,
∴AD=12k=12×=8.
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A→B→A的方向运动,设运动时间为t(s)(0≤t<6),连接EF,当△BEF是直角三角形时,t的值为___________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且-2≤x≤1时,y的最大值为9,则a的值为
A. 1或 B. -或 C. D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,的三个顶点都在格点上,点的坐标为,请解答下列问题:
(1)画出关于轴对称的,点的坐标为______;
(2)在网格内以点为位似中心,把按相似比放大,得到,请画出;若边上任意一点的坐标为,则两次变换后对应点的坐标为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某景区平面图如图1所示,为边界上的点.已知边界是一段抛物线,其余边界均为线段,且,抛物线顶点到的距离.以所在直线为轴,所在直线为轴,建立平面直角坐标系.
求边界所在抛物线的解析式;
如图2,该景区管理处欲在区域内围成一个矩形场地,使得点在边界上,点在边界上,试确定点的位置,使得矩形的周长最大,并求出最大周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是正方形,以BC为底边向正方形外部作等腰直角三角形BCE,连接AE,分别交BD,BC于点F,G,则下列结论:①△AFB∽△ABE;②△ADF∽△GCE;③CG=3BG;④AF=EF,其中正确的有( ).
A.①③B.②④C.①②D.③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在 Rt△ABC 中BC=2,以 BC 的中点 O 为圆心的⊙O 分别与 AB,AC 相切于 D,E 两点,的长为( )
A.B.C.πD.2π
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,AE⊥BD于点E,点P是边AD上一点.
(1)若BP平分∠ABD,交AE于点G,PF⊥BD于点F,如图①,证明四边形AGFP是菱形;
(2)若PE⊥EC,如图②,求证:AEAB=DEAP;
(3)在(2)的条件下,若AB=1,BC=2,求AP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A的坐标为(2,2),点P在直线y=﹣x上运动,∠PAB=90°,∠APB=30°,在点P运动的过程中OB的最小值为( )
A.3.5B.2C.D.2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com