精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.
(1)试求抛物线的解析式;
(2)记抛物线顶点为D,求△BCD的面积;
(3)若直线y=﹣ x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.

【答案】
(1)解:由题意 解得

∴抛物线解析式为y= x2﹣x+2


(2)解:∵y= x2﹣x+2= (x﹣1)2+

∴顶点坐标(1, ),

∵直线BC为y=﹣x+4,∴对称轴与BC的交点H(1,3),

∴SBDC=SBDH+SDHC= 3+ 1=3


(3)解:由 消去y得到x2﹣x+4﹣2b=0,

当△=0时,直线与抛物线相切,1﹣4(4﹣2b)=0,

∴b=

当直线y=﹣ x+b经过点C时,b=3,

当直线y=﹣ x+b经过点B时,b=5,

∵直线y=﹣ x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,

<b≤3.


【解析】(1)根据待定系数法即可解决问题.(2)求出直线BC与对称轴的交点H,根据SBDC=SBDH+SDHC即可解决问题.(3)由 ,当方程组只有一组解时求出b的值,当直线y=﹣ x+b经过点C时,求出b的值,当直线y=﹣ x+b经过点B时,求出b的值,由此即可解决问题.
【考点精析】掌握二次函数的性质是解答本题的根本,需要知道增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC的两条中线AD、CE交于点G,且AD⊥CE.连接BG并延长与AC交于点F,若AD=9,CE=12,则GF为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=10,AC=2 ,BC边上的高AD=6,则另一边BC等于(
A.10
B.8
C.6或10
D.8或10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1 , 如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn1 , 使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点Bn的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.
(1)求证:AC是⊙O的切线;
(2)若OB=10,CD=8,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠BAC=900,AB=AC,点D是BC上一动点,连接AD,过点A作AE⊥AD,并且始终保持AE=AD,连接CE.

(1)求证:△ABD≌△ACE;

(2)若AF平分∠DAE交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;

(3)在(2)的条件下,若BD=6,CF=8,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探索题:(x-1)(x+1)=x2-1

(x-1)(x2+x=1)=x3-1

(x-1)(x4+x2+x=1)=x4-1

(x-1)(x5+x4+x2+x=1)=x5-1

根据前面的规律,回答下列问题:

(1) …+=_____________.

(2)当x=3,…+=__________..

(3)求:…+的值。(请写出解题过程)

(4)求 …+的值的个位数字。(只写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P.

(1)求证:ABM≌△BCN;

(2)求APN的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).

(1)求抛物线的函数表达式;
(2)若点P在抛物线上,且SAOP=4SBOC , 求点P的坐标;
(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.

查看答案和解析>>

同步练习册答案