精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,∠A=36°,∠C=72°,∠DBC=36°.

(1)求∠ABD的度数。

(2)求证:BC=AD.

【答案】36°,∠C=∠BDC=72°

【解析】

(1)由∠C=72゜,∠A=∠DBC=36゜,根据三角形内角和定理,可求得∠ABD=∠A=36°;

(2)进一步求出∠ABC=∠BCD=∠BDC=72°,得出BD=BC,再由∠ABD=∠A得出BD=AD,继而求得答案.

(1)解:在△ABC中,

ABC=180°-∠A-∠C=72°,

∴∠ABD=∠ABC-∠DBC=36°;

(2)证明:在△BCD中,

BDC =180°-∠DBC-∠C=72°,

∴∠BDC =∠C

BD=BC

又∠ABD=∠A

BD=AD

BC=BD=AD

BC= AD.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图(1),A1B1和A2B2是水面上相邻的两条赛道(看成两条互相平行的线段).甲是一名游泳运动健将,乙是一名游泳爱好者,甲在赛道A1B1上从A1处出发,到达B1后,以同样的速度返回A1处,然后重复上述过程;乙在赛道A2B2上以1.5m/s的速度从B2处出发,到达A2后以相同的速度回到B2处,然后重复上述过程(不考虑每次折返时的减速和转向时间).若甲、乙两人同时出发,设离开池边B1B2的距离为y(m),运动时间为t(s),甲游动时,y(m)与t(s)的函数图象如图2所示.
(1)赛道的长度是m,甲的速度是m/s;当t=s时,甲、乙两人第一次相遇,当t=s时,甲、乙两人第二次相遇?
(2)第三次相遇时,两人距池边B1B2多少米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y= 在第一象限的图象经过点B,与OA交于点P,且OA2﹣AB2=18,则点P的横坐标为(
A.9
B.6
C.3
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形纸片ABCD中,AB4BC6,将ABC沿AC折叠,使点B落在点E处,CEAD于点F,则DF的长等于(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】放风筝是大家喜爱的一种运动,星期天的上午小明在市政府广场上放风筝.如图,他在A处不小心让风筝挂在了一棵树梢上,风筝固定在了D处,此时风筝AD与水平线的夹角为30°,为了便于观察,小明迅速向前边移动,收线到达了离A处10米的B处,此时风筝线BD与水平线的夹角为45°.已知点A,B,C在同一条水平直线上,请你求出小明此时所收回的风筝线的长度是多少米?(风筝线AD,BD均为线段, ≈1.414, ≈1.732,最后结果精确到1米).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,以边长为8的正方形纸片ABCD的边AB为直径作⊙O,交对角线AC于点E.
(1)线段AE=
(2)如图2,以点A为端点作∠DAM=30°,交CD于点M,沿AM将四边形ABCM剪掉,使Rt△ADM绕点A逆时针旋转(如图3),设旋转角为α(0°<α<150°),旋转过程中AD与⊙O交于点F.
①当α=30°时,请求出线段AF的长;
②当α=60°时,求出线段AF的长;判断此时DM与⊙O的位置关系,并说明理由;
③当α= 时,DM与⊙O相切.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ABCD 相交于点O,∠AOD=3BOD+20°.

(1)求∠BOD的度数;

(2)O为端点引射线OE,OF ,射线OE平分∠BOD,且∠EOF= 90°,求∠BOF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一副含 角的三角板 叠合在一起,边 重合, (如图1),点 为边 的中点,边 相交于点 .现将三角板 绕点 按顺时针方向旋转(如图2),在 的变化过程中,点 相应移动的路径长为 . (结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠1和∠2互为补角,∠A=D.求证:ABCD.

证明:∵∠1与∠CGD是对顶角,

∴∠1=CGD______.

又∠1和∠2互为补角(已知),

∴∠CGD和∠2互为补角,

AEFD_________

∴∠A=BFD_______.

∵∠A=D(已知),

∴∠BFD=D_______

ABCD______.

查看答案和解析>>

同步练习册答案