精英家教网 > 初中数学 > 题目详情
利用图形,我们可以求出tan30°的值.如图,在Rt△ABC中,已知∠C=90°,AB=2,AC=1,可求出∠B=30°,tan30°=
AC
BC
=
1
3
=
3
3
.在此图的基础上,我们还可以添加适当的辅助线,求出tan15°的值,请你动手试一试.
分析:根据角平分线的性质以及勾股定理首先求出CD的长,进而得出tan15°=
CD
BC
求出即可.
解答:解:作∠B的平分线交AC于点D,作DE⊥AB,垂足为E,
∵BD平分∠ABC,CD⊥BC,DE⊥AB,
∴CD=DE,
设CD=x,则AD=1-x,AE=2-BC=2-BE=2-
3

在Rt△ADE中,
CD2+AE2=AD2
x2+(2-
3
2=(1-x)2
解得:x=2
3
-3,
∴tan15°=
CD
BC
=
2
3
-3
3
=2-
3
点评:此题主要考查了解直角三角形和勾股定理等知识,根据已知得出CD的长是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为:1+2+3+…+n=
 

精英家教网
(2)小明在一次数学活动中,为了求
1
2
+
1
22
+
1
23
+
1
24
+…+
1
2n
的值,设计了如图3所示的图形.请你利用这个几何图形求
1
2
+
1
22
+
1
23
+
1
24
+…+
1
2n
的值为
 

精英家教网
(3)请你利用图4,再设计一个能求
1
2
+
1
22
+
1
23
+
1
24
+…+
1
2n
的值的图形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网我们容易发现:反比例函数的图象是一个中心对称图形.你可以利用这一结论解决问题.如图,在同一直角坐标系中,正比例函数的图象可以看作是:将x轴所在的直线绕着原点O逆时针旋转α度角后的图形.若它与反比例函数y=
3
x
的图象分别交于第一、三象限的点B,D,已知点A(-m,O)、C(m,0).
(1)直接判断并填写:不论α取何值,四边形ABCD的形状一定是
 

(2)①当点B为(p,1)时,四边形ABCD是矩形,试求p,α,和m的值;
②观察猜想:对①中的m值,能使四边形ABCD为矩形的点B共有几个?(不必说理)
(3)试探究:四边形ABCD能不能是菱形?若能,直接写出B点的坐标,若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

式子
a2+b2
可以理解为“以a、b为直角边长的直角三角形的斜边长”,利用这个知识,我们可以恰当地构造图形来解决一些数学问题.比如在解“已知a+b=2,则
a2+1
+
b2+4
的最小值为
13
13
”时,我们就可以构造两个直角三角形,转化为“求两个直角三角形的斜边和最小是多少”的问题.请你根据所给图形和题意,在横线上填上正确的答案.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,BO、CO分别为∠ABC和∠ACB的平分线,我们易得∠BOC=90°+
12
∠A(不必证明,本题可直接运用);在图②中,当BO′、CO′分别为∠ABC和∠ACB的外角平分线时,求∠BO′C与∠A的数量关系.我们可以利用“转化”的思想,将未知的∠BO′C转化为已知的∠BOC:如图②,作BO、CO平分∠ABC和∠ACB.

(1)在图②中存在如图③的基本图形:点A、B、D在同一直线上,且BO、BO′分别平分∠ABC和∠DBC,试证明:BO⊥BO′;
(2)试直接利用上述基本图形的结论,猜想并证明图②中∠BO′C与∠A的数量关系;
(3)如图④,BP、CP分别为内角∠ABC和外角∠ACF的平分线,试运用上述转化的思想猜想并证明∠BPC与∠A的数量关系.

查看答案和解析>>

同步练习册答案