精英家教网 > 初中数学 > 题目详情

【题目】如图,AB⊙O的直径,弧ED=BD,连接EDBD,延长AEBD的延长线于点M,过点D⊙O的切线交AB的延长线于点C

1)若OACD,求阴影部分的面积;

2)求证:DEDM

【答案】14-π;(2)参见解析.

【解析】

试题(1)连接OD,由已知条件可证出三角形ODC是等腰直角三角形,OD的长度知道,∠DOB的度数是45度,这样,阴影的面积就等于等腰直角三角形ODC的面积减去扇形ODB的面积.(2)连接AD,由已知条件可证出AD垂直平分BM,从而得到DM=DB,又因为弧DE=DBDE=DB,所以DE就等于DM了.

试题解析:(1)连接OD∵CD⊙O切线,∴OD⊥CD∵OA="CD" =OA=OD∴OD=CD=∴△OCD 为等腰直角三角形∠DOC=∠C=45°S阴影=S△OCD-SOBD=××.(2)连接AD∵AB⊙O直径∴∠ADB=∠ADM= 90°ED=BD∴ED="BD" ∠MAD=∠BAD∴△AMD≌△ABD∴DM="BD" ∴DE=DM.如图所示:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】1是一种可折叠台灯,它放置在水平桌面上,将其抽象成图2,其中点BED均为可转动点.现测得AB=BE=ED=CD=15cm,经多次调试发现当点BE所在直线垂直经过CD的中点F时(如图3所示)放置较平稳.

1)求平稳放置时灯座DC与灯杆DE的夹角的大小;

2)为保护视力,写字时眼睛离桌面的距离应保持在30cm,为防止台灯刺眼,点A离桌面的距离应不超过30cm,求台灯平稳放置时ABE的最大值.(结果精确到0.01°,参考数据: ≈1.732sin7.70°≈0.134cos82.30°≈0.134,可使用科学计算器)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O△ABC的外接圆,AB⊙O的直径,D⊙O上一点,OD⊥AC,垂足为E,连接BD.

(1)求证:BD平分∠ABC

(2) ∠ODB=30°时,求证:BC=OD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是  

A. 连续抛一枚均匀硬币2次必有1次正面朝上

B. 连续抛一枚均匀硬币10次都可能正面朝上

C. 大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次

D. 通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,

(1)求弦AC的长;

(2)求证:BC∥PA.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的盒子里,装有三个分别写有数字6-27的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树状图的方法,求下列事件的概率:

(1)两次取出小球上的数字相同;

(2)两次取出小球上的数字之和大于10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读探索:任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?(完成下列空格)

(1)当已知矩形A的边长分别为61时,小亮同学是这样研究的:

设所求矩形的两边分别是xy,由题意得方程组:,消去y化简得:2x2﹣7x+6=0,

∵△=49﹣48>0,

x1=_____,x2=_______,

∴满足要求的矩形B存在.

(2)如果已知矩形A的边长分别为21,请你仿照小亮的方法研究是否存在满足要求的矩形B.

(3)如果矩形A的边长为mn,请你研究满足什么条件时,矩形B存在?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知为坐标原点,抛物线轴相交于点.与轴交于点,点在直线上.

1)当随着的增大而增大时,求自变量的取值范围;

2)将抛物线向左平移个单位,记平移后随着的增大而增大的部分为,直线向下平移个单位,当平移后的直线与有公共点时,求的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次数学综合实践活动中,小明计划测量城门大楼的高度,在点B处测得楼顶A的仰角为22°,他正对着城楼前进21米到达C处,再登上3米高的楼台D处,并测得此时楼顶A的仰角为45°

1)求城门大楼的高度;

2)每逢重大节日,城门大楼管理处都要在AB之间拉上绳子,并在绳子上挂一些彩旗,请你求出AB之间所挂彩旗的长度(结果保留整数).(参考数据:sin22°≈cos22°≈tan22°≈

查看答案和解析>>

同步练习册答案