【题目】某粮库已存有粮食100吨,本周内粮库进出粮食的纪录如下(运进记为正,运出记为负):
(1)通过计算,说明本周内哪天粮库剩下的粮食最多?
(2)若运进的粮食为购进的,购买的价格为每吨2000元,运出的粮食为卖出的,卖出的价格为每吨2300元,则这周的利润为多少?
(3)若每周平均进出的粮食大致相同,则再过几周粮库存的粮食可达到200吨?
【答案】见解析
【解析】
(1)理解“+”表示进库,“-”表示出库,求出每天的情况即可求解.
(2)这一周的利润=卖出的钱数-购买的钱数,依次列式计算即可求解.
(3)(200-一周前存有粮食吨数)÷每周平均进出的粮食数量-1,列式计算即可求解.
(1)星期一100+35=135吨
星期二135-20=115吨
星期三115-30=85吨
星期四85+25=110吨
星期五110-24=86吨
星期六86+50=136吨
星期日136-26=110吨
故星期六最多,是136吨.
(2)2300×(20+30+24+26)-2000×(35+25+50)
=2300×100-2000×110
=230000-220000
=10000元
(3)(200-100)÷(35+25+50-20-30-24-26)-1
=100÷10-1
=10-1
=9周
故再过9周粮库库存粮食达到200吨.
科目:初中数学 来源: 题型:
【题目】某电脑公司销售部为了定制下个月的销售计划,对20位销售员本月的销售量进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的平均数、中位数、众数分别是( )
A.19,20,14
B.19,20,20
C.18.4,20,20
D.18.4,25,20
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列关于函数 的四个命题:①当 时, 有最小值10;② 为任意实数, 时的函数值大于 时的函数值;③若 ,且 是整数,当 时, 的整数值有 个;④若函数图象过点 和 ,其中 , ,则 .其中真命题的序号是( )
A.①
B.②
C.③
D.④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)方法回顾:在学习三角形中位线时,为了探索三角形中位线的性质,思路如下:
第一步添加辅助线:如图1,在中,延长(分别是的中点)到点,使得,连接;
第二步证明,再证四边形是平行四边形,从而得出三角形中位线的性质结论:____________________________________(请用DE与BC表示)
(2)问题解决:如图2,在正方形ABCD中,E为AD的中点,G、F分别为AB、CD边上的点,若AG=2,DF=3,∠GEF=90°,求GF的长.
(3)拓展研究:如图3,在四边形ABCD中,∠A=105°,∠D=120°,E为AD的中点,G、F分别为AB、CD边上的点,若AG=,DF=2,∠GEF=90°,求GF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(阅读理解)
点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离3倍,那么我们就称点C是{ A,B }的奇点.
例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{ A,B }的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B }的奇点,但点D是{B,A}的奇点.
(知识运用)
如图2,M、N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5.
(1)数 所表示的点是{ M,N}的奇点;数 所表示的点是{N,M}的奇点;
(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,到达点A停止.P点运动到数轴上的什么位置时,P、A和B中恰有一个点为其余两点的奇点?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知数轴上三点M,O,N对应的数分别为-1,0,3,点P为数轴上任意一点,其对应的数为x.
(1)MN的长为 ;
(2)如果点P到点M、点N的距离相等,那么x的值是 ;
(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由.
(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG于F,连接DE.
(1)求证:△ABE≌△DAF;
(2)若AF=1,S△ADE=8,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校在“数学小论文”评比活动中,共征集到论文100篇,对论文评比的分数(分数为整数)整理后,分组画出频数分布直方图(如图),已知从左到右5个小长方形的高的比为l:3:7:6:3,那么在这次评比中被评为优秀的论文(分数大于或等于80分为优秀)有____篇.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠BAC=90°,D是BC中点,E是AD中点,过A作AF∥BC
①求证:△AEF≌△DEB;
②求证:四边形ADCF是菱形;
③若AB=5,AC=4,求菱形ADCF的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com