精英家教网 > 初中数学 > 题目详情
(2012•徐汇区一模)在△ABC中,AB=AC,把△ABC折叠,使点B与点A重合,折痕交AB于点M,交BC于点N.如果△CAN是等腰三角形,则∠B的度数为
45°或36°
45°或36°
分析:MN是AB的中垂线,则△ABN是等腰三角形,且NA=NB,即可得到∠B=∠BAN=∠C.然后对△ANC中的边进行讨论,然后在△ABC中,利用三角形内角和定理即可求得∠B的度数.
解答:解:∵把△ABC折叠,使点B与点A重合,折痕交AB于点M,交BC于点N,
∴MN是AB的中垂线.
∴NB=NA.
∴∠B=∠BAN,
∵AB=AC
∴∠B=∠C.
设∠B=x°,则∠C=∠BAN=x°.
1)当AN=NC时,∠CAN=∠C=x°.
则在△ABC中,根据三角形内角和定理可得:4x=180,
解得:x=45°则∠B=45°;
2)当AN=AC时,∠ANC=∠C=x°,而∠ANC=∠B+∠BAN,故此时不成立;
3)当CA=CN时,∠NAC=∠ANC=
180-x
2

在△ABC中,根据三角形内角和定理得到:x+x+x+
180-x
2
=180,
解得:x=36°.
故∠B的度数为 45°或36°.
点评:本题考查了等腰三角形的性质,等边对等角,正确对△ANC的边进行讨论是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•徐汇区一模)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,如果△ADC和△BDC的周长之比是1:3,则cot∠BCD=
1
3
1
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•徐汇区一模)在Rt△ABC中,∠C=90°,AC=5,∠A=α,那么BC的长是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•徐汇区一模)将抛物线y=x2+2向右平移1个单位后所得抛物线的解析式是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•徐汇区一模)直升飞机在离地面2000米的上空测得上海东方明珠底部的俯角为30°,此时直升飞机与上海东方明珠底部之间的距离是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•徐汇区一模)如图,在Rt△ABC中,∠ACB=90°,CE是斜边AB上的中线,AB=10,tanA=
43
,点P是CE延长线上的一动点,过点P作PQ⊥CB,交CB延长线于点Q,设EP=x,BQ=y.
(1)求y关于x的函数关系式及定义域;
(2)连接PB,当PB平分∠CPQ时,求PE的长;
(3)过点B作BF⊥AB交PQ于F,当△BEF和△QBF相似时,求x的值.

查看答案和解析>>

同步练习册答案