精英家教网 > 初中数学 > 题目详情
如图1,在第一象限内,直线y=mx与过点B(0,1)且平行于x轴的直线l相交于点A,半径为r的⊙Q与直线y=mx、x轴分别相切于点T、E,且与直线l分别交于不同的M、N两点.

(1)当点A的坐标为(,p)时,
①填空:p=___,m= ___,∠AOE= ___.
②如图2,连接QT、QE,QE交MN于点F,当r=2时,试说明:以T、M、E、N为顶点的四边形是等腰梯形;
(2)在图1中,连接EQ并延长交⊙Q于点D,试探索:对m、r的不同取值,经过M、D、N三点的抛物线y=ax2+bx+c,a的值会变化吗?若不变,求出a的值;若变化.请说明理由.
解:(1)1,,60°;
(2)连接TM,ME,EN,ON,如图,

∵OE和OP是⊙Q的切线,
∴QE⊥x轴,QT⊥OT,即∠QTA=90°,
而l∥x轴,
∴QE⊥MN,
∴MF=NF,
又∵当r=2,EF=1,
∴QF=2-1=1,
∴四边形QNEM为平行四边形,即QN∥ME,
∴NQ=NE,即△QEN为等边三角形,
∴∠NQE=60°,∠QNF=30°,
在四边形OEQT中,∠QTO=∠QEO=90°,∠TOE=60°,
∴∠TQE=360°-90°-90°-60°=120°,
∴∠TQE+∠NQE=120°+60°=180°,
∴T、Q、N三点共线,即TN为直径,
∴∠TMN=90°,
∴TN∥ME,
∴∠MTN=60°=∠TNE,
∴以T、M、E、N为顶点的四边形是等腰梯形;
(3)对m、r的不同取值,经过M、D、N三点的抛物线y=ax2+bx+c,a的值不会变化.理由如下:
连DM,ME,如图,
∵DM为直径,
∴∠DME=90°,
而DM垂直平分MN,
∴Rt△MFD∽Rt△EFM,
∴MF2=EF•FD,
设D(h,k),(h>0,k=2r),则过M、D、N三点的抛物线的解析式为:y=a(x-h)2+k,
又∵M、N的纵坐标都为1,
当y=1,a(x-h)2+k=1,解得x1="h-" x2="h+"
∴MN="2"
∴MF= MN=
∴(2=1•(k-1),
∵k>1,
=k-1,
∴a=-1.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

(2011•綦江县)如图,已知AB为⊙O的直径,∠CAB=30°,则∠D= 60° 

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,是⊙的弦,点D是弧AB的中点,过B作AB的垂线交AD的延长线于C.求证:AD=DC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知直线AB是⊙O的切线,A为切点,OB交⊙O于点C,点D在⊙O上,且∠OBA=40°,则∠ADC=        

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知的半径分别是5和4,,则的位置关系是(  )
A.外离B.外切C.相交D.内切

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

(2011•攀枝花)如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,OM=,则sin∠CBD的值等于(  )

A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2011•陕西)如图,在△ABC中,∠B=60°,⊙O是△ABC外接圆,过点A作⊙O的切线,交CO的延长线于P点,CP交⊙O于D
(1)求证:AP=AC;
(2)若AC=3,求PC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

(2011山东济南,21,3分)如图,△ABC为等边三角形,AB=6,动点O在△ABC的边上从点A出发沿着A→C→B→A的路线匀速运动一周,速度为1个长度单位每秒,以O为圆心、为半径的圆在运动过程中与△ABC的边第二次相切时是出发后第  秒.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本小题 10 分)如图,在 Rt△ABC中,∠ACB=90D是AB 边上的一点,以BD为直径的⊙0与边 AC 相切于点E,连结DE并延长,与BC的延长线交于点 F .
( 1 )求证: BD =" BF" ;
( 2 )若 BC =" 12" , AD =" 8" ,求 BF 的长.

查看答案和解析>>

同步练习册答案