精英家教网 > 初中数学 > 题目详情
19.如图,点C是以AB为直径的⊙O上一点,CD是⊙O切线,D在AB的延长线上,作AE⊥CD于E.
(1)求证:AC平分∠BAE;
(2)若AC=2CE=6,求⊙O的半径;
(3)请探索:线段AD,BD,CD之间有何数量关系?请证明你的结论.

分析 (1)连接OC,由CD是⊙O切线,得到OC⊥CD,根据平行线的性质得到∠EAC=∠ACO,有等腰三角形的性质得到∠CAO=∠ACO,于是得到结论;
(2)连接BC,由三角函数的定义得到sin∠CAE=$\frac{CE}{AC}$=$\frac{1}{2}$,得到∠CAE=30°,于是得到∠CAB=∠CAE=30°,由AB是⊙O的直径,得到∠ACB=90°,解直角三角形即可得到结论;
(3)根据余角的性质得到∠DCB=∠ACO根据相似三角形的性质得到结论.

解答 (1)证明:连接OC,
∵CD是⊙O切线,
∴OC⊥CD,
∵AE⊥CD,
∴OC∥AE,
∴∠EAC=∠ACO,
∵OA=OC,
∴∠CAO=∠ACO,
∴∠EAC=∠A=CAO,
即AC平分∠BAE;

(2)解:连接BC,
∵AE⊥CE,AC=2CE=6,
∴sin∠CAE=$\frac{CE}{AC}$=$\frac{1}{2}$,
∴∠CAE=30°,
∴∠CAB=∠CAE=30°,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴cos∠CAB=$\frac{AC}{AB}$=$\frac{\sqrt{3}}{2}$,
∴AB=4$\sqrt{3}$,
∴⊙O的半径是2$\sqrt{3}$;

(3)CD2=BD•AD,
证明:∵∠DCB+∠BCO=90°,∠ACO+∠BCO=90°,
∴∠DCB=∠ACO,
∴∠DCB=∠ACO=∠CAD,
∵∠D=∠D,
∴△BCD∽△CAD,
∴$\frac{BD}{CD}=\frac{CD}{AD}$,
即CD2=BD•AD.

点评 本题考查了切线的性质,三角函数的定义,余角的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

9.等腰三角形的两边长分别为3、6,则该三角形的周长为(  )
A.12或15B.9C.12D.15

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.在一个不透明的口袋中装有若干个只有颜色不同的球,如果口袋中装有5个红球,且摸出红球的概率为$\frac{1}{3}$,那么袋中其他颜色的球有10个.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.四边形ABCD的对角线交于点E,有AE=EC,BE=ED,以AB为直径的⊙O过点E.
(1)求证:四边形ABCD的是菱形;
(2)若CD的延长线与圆相切于点F,已知直径AB=4,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.用配方法解一元二次方程:x2-6x+6=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了一部分多项式,形式如下:
+(a-3b)2=2a2+5b2
(1)求所捂的多项式;
(2)当a=-2,b=$\sqrt{5}$时,求所捂的多项式的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.从⊙O外一点A引⊙O的切线AB,切点为B,连接AO并延长交⊙O于点C,点D.连接BC.
(1)如图1,若∠A=26°,求∠C的度数;
(2)如图2,若AE平分∠BAC,交BC于点E.求∠AEB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.(1)化简:a(a-2b)+(a+b)2
(2)解不等式组$\left\{\begin{array}{l}{x-2>0}\\{-2x+6>0}\end{array}\right.$,并把解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,AB是⊙O的直径,弦AC,BD交于点E,且tan∠AED=$\frac{1}{2}$,则$\frac{AB}{DC}$的值是$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

同步练习册答案