【题目】如图,在△ABC中,∠C=90°,D在AB边上,以BD为直径的半圆与AC相切于点E,连接BE.
(1)试说明:BE平分∠ABC;
(2)若∠A=30°,⊙O的半径为6,求图中阴影部分的面积.
【答案】(1)见解析;(2)18﹣6π.
【解析】
试题分析:(1)连接OE,根据切线的性质得出OE⊥AC,即可证得OE∥BC,得出∠EBC=∠OEB,因为∠OEB=∠OBE,证得∠OBE=∠EBC,得出结论;
(2)分别求得三角形AOE和扇形的面积,根据S阴影=S△AOE﹣S扇形ODE即可求得.
(1)证明:连接OE,
∵半圆与AC相切于点E,
∴OE⊥AC,
∵∠C=90°,
∴OE∥BC,
∴∠EBC=∠OEB,
∵OE=OB,
∴∠OEB=∠OBE,
∴∠OBE=∠EBC,
∴BE平分∠ABC;
(2)∵OE⊥AC,∠A=30°,⊙O的半径为6,
∴OE=6,∠AOE=60°,
∴OA=2OE=12,
∴AE==6,
∴S阴影=S△AOE﹣S扇形ODE=×6×6﹣=18﹣6π.
科目:初中数学 来源: 题型:
【题目】探究与发现:
探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?
已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.
探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?
已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.
探究三:若将△ADC改为任意四边形ABCD呢?
已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.
探究四:若将上题中的四边形ABCD改为六边形ABCDEF(图4)呢?
请直接写出∠P与∠A+∠B+∠E+∠F的数量关系: .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com