【题目】在平面直角坐标系xOy中,直线x=5与直线y=3,x轴分别交于点A,B,直线y=kx+b(k≠0)经过点A且与x轴交于点C(9,0).
(1)求直线y=kx+b的表达式;
(2)横、纵坐标都是整数的点叫做整点.记线段AB,BC,CA围成的区域(不含边界)为W.
①结合函数图象,直接写出区域W内的整点个数;
②将直线y=kx+b向下平移n个单位,当平移后的直线与区域W没有公共点时,请结合图象直接写出n的取值范围.
【答案】(1)y=x+;(2)①区域W内的整点个数是3个;②n≥3.
【解析】
(1)根据图形,可以得到点A的坐标,再根据直线y=kx+b过点A和点C,从而可以得到直线y=kx+b的表达式;
(2)①根据题意和图象,可以得到区域W内的整点个数;
②根据平移的特点和图象,可以得到n的取值范围.
解:(1)由图可得,点A的坐标为(5,3),
∵直线y=kx+b过点A(5,3),点C(9,0),
∴,得,
即直线y=kx+b的表达式是y=x+;
(2)①由图象可得,
区域W内的整点的坐标分别为(6,1),(6,2),(7,1),
即区域W内的整点个数是3个;
②由图象可知,当点A向下平移3个单位长度时,直线y=kx+b与区域W没有公共点,
即n的取值范围是n≥3.
科目:初中数学 来源: 题型:
【题目】已知,如图,在菱形ABCD中.(1)分别以C,D为圆心,大于长为半径作弧,两弧分别交于点E,F;(2)作直线EF,且直线EF恰好经过点A,且与边CD交于点M;(3)连接BM.根据以上作图过程及所作图形,判断下列结论中错误的是( )
A.∠ABC=60°B.如果AB=2,那么BM=4
C.BC=2CMD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,直线PQ与⊙O相切于点C,以OB,BC为边作OBCD,连接AD并延长交⊙O于点E,交直线PQ于点F.
(1)求证:AF⊥CF;
(2)连接OC,BD交于点H,若tan∠OCB=3,⊙O的半径是5,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在四边形ABCD中,用①AB∥DC,②AD=BC,③∠A=∠C中的两个作为题设,余下的一个作为结论.用“如果…,那么…“的形式,写出一个真命题:在四边形ABCD中,_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线l及直线l外一点P.如图,
(1)在直线l上取一点A,连接PA;
(2)作PA的垂直平分线MN,分别交直线l,PA于点B,O;
(3)以O为圆心,OB长为半径画弧,交直线MN于另一点Q;
(4)作直线PQ.
根据以上作图过程及所作图形,下列结论中错误的是( )
A.△OPQ≌△OABB.PQ∥AB
C.AP=BQD.若PQ=PA,则∠APQ=60°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,D是直径AB上一定点,E,F分别是AD,BD的中点,P是上一动点,连接PA,PE,PF.已知AB=6cm,设A,P两点间的距离为xcm,P,E两点间的距离为y1cm,P,F两点间的距离为y2cm.
小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.
下面是小腾的探究过程,请补充完整:
(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 0.97 | 1.27 |
| 2.66 | 3.43 | 4.22 | 5.02 |
y2/cm | 3.97 | 3.93 | 3.80 | 3.58 | 3.25 | 2.76 | 2.02 |
(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;
(3)结合函数图象,解决问题:当△PEF为等腰三角形时,AP的长度约为 cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市计划购进甲、乙两种商品,两种商品的进价、售价如下表:
商品 | 甲 | 乙 |
进价(元/件) | x60 | x |
售价(元/件) | 200 | 100 |
若用1800元购进甲种商品的件数与用900元购进乙种商品的件数相同.
(1)求甲、乙两种商品的进价是多少元?
(2)若超市销售甲、乙两种商品共100件,其中销售甲种商品为a件(a40),设销售完100件甲、乙两种商品的总利润为w元,求w与a之间的函数关系式,并求出w的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,反比例函数y=(x>0)的图象G与直线l:y=2x﹣4交于点A(3,a).
(1)求k的值;
(2)已知点P(0,n)(n>0),过点P作平行于x轴的直线,与图象G交于点B,与直线l交于点C.横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段AC,BC围成的区域(不含边界)为W.
①当n=5时,直接写出区域W内的整点个数;
②若区域W内的整点恰好为3个,结合函数图象,直接写出n的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com