精英家教网 > 初中数学 > 题目详情
5.如图所示,将纸片△ABC沿着DE折叠压平,则(  )
A.∠A=∠1+∠2B.∠A=$\frac{1}{2}$(∠1+∠2)C.∠A=$\frac{1}{3}$(∠1+∠2)D.∠A=$\frac{1}{4}$(∠1+∠2)

分析 由折叠及邻补角的性质可知,∠1=180°-2∠ADE,∠2=180°-2∠AED,两式相加,结合已知可求∠ADE+∠AED的度数,在△ADE中,由内角和定理可求∠A的度数.

解答 解:根据折叠及邻补角的性质,得
∠1=180°-2∠ADE,∠2=180°-2∠AED,
∴∠1+∠2=360°-2(∠ADE+∠AED),
∴∠ADE+∠AED=$\frac{1}{2}$[360°-(∠1+∠2)]=180°-$\frac{1}{2}$(∠1+∠2),
∴在△ADE中,由内角和定理,得
∠A=180°-(∠ADE+∠AED)=180°-180°+$\frac{1}{2}$(∠1+∠2)=$\frac{1}{2}$(∠1+∠2).
故选B.

点评 本题考查了翻折变换,邻补角的性质,三角形内角和定理,关键是把∠1+∠2看作整体,对角的和进行转化.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

20.不等式组$\left\{\begin{array}{l}{-x+2<x-4}\\{x>m}\end{array}\right.$的解集是x>3,那么m的取值范围是(  )
A.m≥3B.m≤3C.m>3D.m<3

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.在平行四边形ABCD中,∠ABC=60°,AB=2$\sqrt{3}$,AD=10,点P在直线BC上,且满足∠APD=90°,则∠APB的正切值为$\frac{1}{3}$或3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.反比例函数y=$\frac{6}{x}$的图象上有两个点A(-2,y1),B(1,y2),则y1<y2(用“>”,“<”或“=”连接).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.在平面直角坐标系中,以方程组$\left\{\begin{array}{l}{y=x+1}\\{y=-x+1}\end{array}\right.$的解为坐标的点(x,y)到原点的距离为(  )
A.1B.2C.$\sqrt{2}$D.-1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长(提示:运用轴对称知识,将图形进行翻折变换解答此题)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知正方形ABCD,点F为射线DB上一点,过点F作FE∥AD,FE交射线AB于E,G为FD的中点,连接CG,求证:∠CGE=90°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.解方程:$\frac{x}{2}$-$\frac{3-4x}{4}$=2-x-$\frac{5-3x}{8}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.若方程组$\left\{\begin{array}{l}{2{x}^{2}+m{y}^{{m}^{2}-2m-1}=2}\\{5{x}^{2}-3xy=4}\end{array}\right.$是二元二次方程组,求m的值.

查看答案和解析>>

同步练习册答案