精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AB=AC,以AB为直径的O交BC于点D,过点D作DEAC于点E.

(1)求证:DE是O的切线.

(2)若B=30°,AB=8,求DE的长.

【答案】1证明见解析;2DE =2

【解析】试题分析:(1)要想证DE O的切线,只要连接OD,求证∠ODE=90°即可.

(2)利用直角三角形和等边三角形的性质来求DE的长.

解:(1)连接OD,则OD=OB

∴∠B=ODB

AB=AC

∴∠B=C

∴∠ODB=C

ODAC

∴∠ODE=DEC=90°

DE是⊙O的切线.

2)连接AD

AB是⊙O的直径,

∴∠ADB=90°

又∵AB=AC

CD=BD=C=B=30°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点是正方形对角线上一动点,点在射线上,且,连接中点.

1)如图1,当点在线段上时,试猜想的数量关系和位置关系,并说明理由;

2)如图2,当点在线段上时,(1)中的猜想还成立吗?请说明理由;

3)如图3,当点的延长线上时,请你在图3中画出相应的图形,并判断(1)中的猜想是否成立?若成立,请直接写出结论;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:

实践:根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如右示意图的测量方案:把镜子放在离树(AB8.7米的点E处,然后沿着直线BE后退到点D,这是恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7米,观察者目高CD=1.6米,请你计算树(AB)的高度(精确到0.1米)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】常常听说345”,是什么意思呢?它就是勾股定理,即直角三角形两直角边长ab与斜边长c之间满足等式:a2+b2c2的一个最简单特例.我们把满足a2+b2c2的三个正整数abc,称为勾股数组,记为(abc).

1)请在下面的勾股数组表中写出mnp合适的数值:

a

b

c

a

b

c

3

4

5

4

3

5

5

12

m

6

8

10

7

24

25

p

15

17

9

n

41

10

24

26

11

60

61

12

35

37

平面直角坐标系中,横、纵坐标均为整数的点叫做整点(格点).过x轴上的整点作y轴的平行线,过y轴上的整点作x轴的平行线,组成的图形叫做正方形网格(有时简称网格),这些平行线叫做格边,当一条线段AB的两端点是格边上的点时,称为AB在格边上.顶点均在格点上的多边形叫做格点多边形.在正方形网格中,我们可以利用勾股定理研究关于图形面积、周长的问题,其中利用割补法、作图法求面积非常有趣.

2)已知ABC三边长度为41315,请在下面的网格中画出格点ABC并计算其面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】AB在数轴上分别表示有理数abAB两点之间的距离表示为AB,在数轴上AB两点之间的距离AB|ab|

利用数形结合思想回答下列问题:

(1)数轴上表示13两点之间的距离   

(2)数轴上表示﹣12和﹣6的两点之间的距离是   

(3)数轴上表示x1的两点之间的距离表示为   

(4)x表示一个有理数,且﹣4x2,则|x2|+|x+4|   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在△ABC中,∠C=90°,AC=BC,过点C在△ABC外作直线MNAMMNMBNMNN

(1)MN=AM+BN成立吗?为什么?

(2)若过点C在△ABC内作直线MNAMMNMBNMNN,则AMBNMN之间有什么关系?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O的半径为3厘米,点B为O外一点,OB交O于点A,且AB=OA,动点P从点A出发,以π厘米/秒的速度在O上按逆时针方向运动一周回到点A立即停止.当点P运动的时间为(  )秒时,直线BP与O相切.

A. 1 B. 5 C. 0.5或5.5 D. 1或5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)观察下列图形与等式的关系,并填空:

2)利用(1)中结论,解决下列问题:

1+3+5+…+2005=   

②计算:101+103+105+…+199

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图象与反比例函数的图象相交于A、B两点.

(1)根据图象,分别写出A、B的坐标;

(2)求出两函数解析式;

(3)根据图象回答:当为何值时,一次函数的函数值大于反比例函数的函数值.

查看答案和解析>>

同步练习册答案