精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系xOy中,直线ABy轴于A点,交X轴于B点,A(0,6),B(6,0).点D是线段BO上一点,BNADAD的延长线于点N.

(1)如图,若OMBNAD于点M.点O0GBN,交BN的延长线于点G,求证:AM=BG

(2)如图,若∠ADO=67.5°,OMBNAD于点M,交AB于点Q,求的值.

(3)如图,若OCABBN的延长线于点C.请证明:∠CDN+2BDN=180°.

【答案】(1)证明见解析;(2);(3)证明见解析.

【解析】

(1)欲证明AM=BG,只要证明△AOM≌△BOG即可;
(2)AD上截取AH=OQ,连接OH,先证明△AOH≌△△OBQ,推出∠AOH=OBQ=45°,推出HD=2MD
(3)如图,作OE平分∠AOBADK.只要证明△AOK≌△OBC,推出OK=OC,再证明△ODK≌△ODC,推出∠ODK=∠ODC,由∠ODK=∠BDN,可得∠ODC=∠BDN,由此即可解决问题.

(1) 在△AOM和△BOG

∴△AOM≌△△BOG

AM=BG.

AD上截取AH=OQ,连接OH,

∵∠ADO=67.5°∴∠OAD=BOQ=22.5°

易证∴△AOH≌△△OBQ

∴∠AOH=OBQ=45°

∴∠HOM=90°-45°-22.5°=22.5°=BOQ

有三线合一性质得HD=2MD

===

(3)作∠AOD的角平分线交ADK

0CAB ∴∠ABO=BOC=AOK=BOK=450

在△AOK和△BOC

∴△AOK≌△△BOC

OK=OC

在△KOD和△DOC

∴△KOD≌△△DOC

∴∠ODC=ODK=BDN

∴∠CDN+2BDN=180°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,是边长为的等边三角形,点上且,点从点出发,向点运动,同时点从点出发,以相同的速度向点运动,当点到达点时,运动停止,相交于点,连接,在此过程中线段长度的最小值是____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(﹣3,0),与反比例函数y= 在第一象限的图象交于点B(3,m),连接BO,若△AOB面积为9,

(1)求反比例函数的表达式和直线AB的表达式;
(2)若直线AB与y轴交于点C,求△COB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形网格中,每个小正方形的边长都为1,ABC在网格中的位置如图所示,△ABC的三个顶点都在格点上.将点A、B、C的横坐标不变,纵坐标都乘以-1,分别得到点A1、B1、C1

(1)写出△A1B1C1,三个顶点的坐标________;

(2)在图中画出△A1B1C1,则△ABC与△A1B1C1关于________对称;

(3)若以点A、C、P为顶点的三角形与△ABC全等,直接写出所有符合条件的点P的坐标________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一座隧道的截面由抛物线和长方形构成,长方形的长为8m,宽为2m,隧道最高点P位于AB的中央且距地面6m,建立如图所示的坐标系:

(1)求抛物线的解析式;
(2)一辆货车高4m,宽2m,能否从该隧道内通过,为什么?
(3)如果隧道内设双行道,那么这辆货车是否可以顺利通过,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABBCDCBCAB=1,DC=2,BC=3,点 P 是线段 BC 上一动点(不与点 BC 重合,若△APD 是等腰三角形,则 CP 的长是_______________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在三角形纸片 ABC 中,AB=15cm,AC=9cm,BC=12cm, 现将边 AC 沿过点 A 的直线折叠,使它落在 AB 边上.若折痕交 BC 于点 D,点 C 落在点 E 处,你能求出 BD 的长吗?请写出求解过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为(
A.1
B.2
C.12 ﹣6
D.6 ﹣6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=AD,BAD=BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为

查看答案和解析>>

同步练习册答案