精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.
(1)求证:PA是⊙O的切线;
(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点C,若ACAB=12,求AC的长.

【答案】
(1)证明:连接CD,如图,

∵AD是⊙O的直径,

∴∠ACD=90°,

∴∠CAD+∠D=90°,

∵∠PAC=∠PBA,

∠D=∠PBA,

∴∠CAD+∠PAC=90°,即∠PAD=90°,

∴PA⊥AD,

∴PA是⊙O的切线


(2)解:∵CF⊥AD,

∴∠ACF+∠CAF=90°,∠CAD+∠D=90°,

∴∠ACF=∠D,

∴∠ACF=∠B,

而∠CAG=∠BAC,

∴△ACG∽△ABC,

∴AC:AB=AG:AC,

∴AC2=AGAB=12,

∴AC=2


【解析】(1)连接CD,如图,利用圆周角定理得到∠CAD+∠D=90°,再∠D=∠PBA,加上∠PAC=∠PBA,所以∠PAD=90°,然后根据切线的判定定理即可得到结论;(2)证明△ACG∽△ABC,再利用相似比得到AC2=AGAB=12,从而得到AC=2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知线段AB4.8cm,点C是线段AB的中点,点D是线段CB的中点,点E在线段AB上,且CEAC,画图并计算DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E,
(1)求证:DE=DB;
(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB经过x轴上的点M,与反比例函数y= (x>0)的图象相交于点A(1,8)和B(m,n),其中m>1,AC⊥x轴于点C,BD⊥y轴于点D,AC与BD交于点P.

(1)求k的值;
(2)若AB=2BM,求△ABD的面积;
(3)若四边形ABCD为菱形,求直线AB的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点CEFB在同一直线上,点ADBC异侧,ABCDAEDFAD

1)求证:AB=CD

2)若ABCFB40°,求D的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l1的函数关系式为y=-x1,且l1x轴交于点D,直线l2经过点A20),B(-13),直线l1l2交于点C

1)求直线l2的函数关系式;

2)点C的坐标为

3)求△ADC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】反比例函数y= 的图象经过点A(﹣1,2),则当x>1时,函数值y的取值范围是( )
A.y>﹣1
B.﹣1<y<0
C.y<﹣2
D.﹣2<y<0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BC=1,点P1 , M1分别是AB,AC边的中点,点P2 , M2分别是AP1 , AM1的中点,点P3 , M3分别是AP2 , AM2的中点,按这样的规律下去,PnMn的长为(n为正整数).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知平行四边形ABCD,对角线ACBD相交于点OOBC=OCB

(1)求证:平行四边形ABCD是矩形;

(2)请添加一个条件使矩形ABCD为正方形.

查看答案和解析>>

同步练习册答案