精英家教网 > 初中数学 > 题目详情

【题目】如图,已知E、F分别是ABCD的边BC、AD上的点,且BE=DF.

(1)求证:四边形AECF是平行四边形;

(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.

【答案】(1)四边形AECF是平行四边形(2)5

【解析】

试题分析:(1)首先由已知证明AFEC,BE=DF,推出四边形AECF是平行四边形.(2)由已知先证明AE=BE,即BE=AE=CE,从而求出BE的长.

试题解析:(1)证明:∵四边形ABCD是平行四边形,

∴AD∥BC,且AD=BC,

∴AF∥EC,

∵BE=DF,

∴AF=EC,

∴四边形AECF是平行四边形.

(2)解:∵四边形AECF是菱形,

∴AE=EC,

∴∠1=∠2,

∵∠3=90°﹣∠2,∠4=90°﹣∠1,

∴∠3=∠4,

∴AE=BE,

∴BE=AE=CE=BC=5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】ab,则下列各式正确的为(  )

A. |a|>|b| B. |a|<|b| C. |a|>b D. a>|b|

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:

问题情境:如图1,四边形ABCD中,AD∥BC,点E为DC边的中点,连接AE并延长交BC的延长线于点F,求证:S四边形ABCD=S△ABF.(S表示面积)

问题迁移:如图2:在已知锐角∠AOB内有一个定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.小明将直线MN绕着点P旋转的过程中发现,△MON的面积存在最小值,请问当直线MN在什么位置时,△MON的面积最小,并说明理由.

实际应用:如图3,若在道路OA、OB之间有一村庄Q发生疫情,防疫部门计划以公路OA、OB和经过防疫站P的一条直线MN为隔离线,建立一个面积最小的三角形隔离区△MON.若测得∠AOB=66°,∠POB=30°,OP=4km,试求△MON的面积.(结果精确到0.1km2)(参考数据:sin66°≈0.91,tan66°≈2.25,≈1.73)

拓展延伸:如图4,在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,0)(6,3)()、(4、2),过点p的直线l与四边形OABC一组对边相交,将四边形OABC分成两个四边形,求其中以点O为顶点的四边形面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(,ka+b)(其中k为常数,且k≠0),则称点P′为点P的“k属派生点”.

例如:P(1,4)的“2属派生点”为P′(1+,2×1+4),即P′(3,6).

(1)①点P(﹣1,﹣2)的“2属派生点”P′的坐标为 _________

②若点P的“k属派生点”P′的坐标为(3,3),请写出一个符合条件的点P的坐标_________

(2)若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且△OPP′为等腰直角三角形,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算a3(﹣ab22的结果是(  )

A. a5b4 B. a4b4 C. ﹣a5b4 D. ﹣a4b4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列运动属于平移的是( )

A. 荡秋千 B. 急刹车时,汽车在地面上的滑动

C. 地球绕着太阳转 D. 风筝在空中随风飘动

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c的顶点为D(﹣1,3),与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:

①b2+4ac>0;②c﹣a=3;③a+b+c<0;④方程ax2+bx+c=m(m≥2)一定有实数根,其中正确的结论为(

A.②③ B.①③ C.①②③ D.①②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简,再求值:[-a+2b)(a-2b+-a+b)(-a-b-b),其中a的算术平方根是它本身,b-8的立方根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把0.0975取近似数,保留两个有效数字的近似值是( )

A. 0.10 B. 0.097 C. 0.098 D. 0.98

查看答案和解析>>

同步练习册答案