精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,直线分别交轴、轴于两点.点,以为一边在轴上方作矩形,且.设矩形重叠部分的面积为

(1)求点的坐标;
(2)当值由小到大变化时,求的函数关系式;
(3)若在直线上存在点,使等于,请直接写出的取值范围.
(1).(2)当0<b≤2时,当2<b≤4时,
当4<b≤6时,④当b>6时,.(3)

试题分析:∵,∴
∵矩形中,,∴
∵点在第一象限,∴
由题意,可知,在Rt△ABO中,tan∠BAO=
①当0<b≤2时,如图1,
②当2<b≤4时,如图2,设
在Rt△AGC中,∵tan∠BAO=,∴

,即
当4<b≤6时,如图3,设,交
在Rt△ADH中,∵tan∠BAO=,∴
在矩形中,∵CD∥EF,∴∠EGH=∠BAO,
在Rt△EGH中,∵tan∠EGH=,∴
,即
④当b>6时,如图4,
点评:本题难度较大,主要考查学生对一次函数和动点问题综合运用解决几何图形问题的能力。为中考常见题型,学生要牢固掌握解题技巧。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系;

(1)根据图中信息,说明图中点(2,0)的实际意义;
(2)求图中线段AB所在直线的函数解析式和甲乙两地之间的距离;
(3)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

图中折线ABC表示从甲地向乙地打长途电话时所需付的电话费y(元)与通话时间t(分钟)之间的关系图像.

(1)从图像知,通话2分钟需付的电话费是     元;
(2)当t≥3时求出该图像的解析式(写出求解过程);
(3)通话7分钟需付的电话费是多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

湖州市八里店镇戴山村生产一种绿色蔬菜,直接销售每吨利润可达2000元;若经粗加工后再销售,每吨利润可达4500元;若经精加工后销售,每吨利润涨到7500元。
当地一家公司收获这种蔬菜140吨,该公司的生产能力是:如果蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但这两种加工方式不能同时进行,受季节条件限制公司必须用15天时间将这批蔬菜全部销售或加工完毕,该公司现有如下两种方案:
方案1:将蔬菜进行精加工,剩下的可直接销售;
方案2:将一部分蔬菜进行精加工,其余进行粗加工,并恰好用15天完成;
试通过分析运算,你认为选择哪种方案获利较多?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在围棋盒中有x颗黑色棋子和y颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是
(1)试写出yx的函数关系式;(2)若往盒中再放进10颗黑色棋子,取得黑色棋子的概率为,求xy的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某酒厂生产A,B两种品牌的酒,每天两种酒共生产700瓶,每种酒每瓶的成本和利润如下表所示,设每天共获利y元,每天生产A种品牌的酒x瓶.
 
A
B
成本(元)
50
35
利润(元)
20
15
(1)请写出y关于x的关系式;
(2)如果该厂每天至少投入成本30000元,那么每天至少获利多少元?
(3)要使每天的利润率最大,应生产A,B两种酒各多少瓶?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

写出一条经过第一、二、四象限,且过点()的直线解析式            .

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

要使函数y=(2m-3)x+(3-m)的图像经过第一、二、三象限,则m的取值范围是___  _____.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

宁波滨海水产城一养殖专业户陈某承包了30亩水塘,分别养殖甲鱼和桂鱼.有关成本、销售额见下表:

(1)2011年,陈某养殖甲鱼20亩,桂鱼10亩.求陈某这一年共收益多少万元?(收益=销售额-成本)
(2)2012年,陈某继续用这30亩水塘全部养殖甲鱼和桂鱼,计划投入成本不超过70万元.若每亩养殖的成本、销售额与2011年相同,要获得最大收益,他应养殖甲鱼和桂鱼各多少亩?
(3)已知甲鱼每亩需要饲料500kg,桂鱼每亩需要饲料700kg.根据(2)中的养殖亩数,为了节约运输成本,实际使用的运输车辆每次装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需全部饲料比原计划减少了2次.求陈某原定的运输车辆每次可装载饲料多少kg?

查看答案和解析>>

同步练习册答案