精英家教网 > 初中数学 > 题目详情
10.如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,竹条AB的长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则一面贴纸的面积为175πcm2(结果保留π).

分析 贴纸部分的面积等于扇形ABC减去小扇形ADE的面积,已知圆心角的度数为120°,扇形的半径为25cm和25-15=10cm,可根据扇形的面积公式求出贴纸的面积.

解答 解:设AB=R,AD=r,
则S贴纸=$\frac{1}{3}$πR2-$\frac{1}{3}$πr2
=$\frac{1}{3}$π(R2-r2
=$\frac{1}{3}$π(R+r)(R-r)
=$\frac{1}{3}$×(25+10)×(25-10)π
=175π(cm2).
答:贴纸的面积为175πcm2
故答案为:175π.

点评 本题主要考查扇形面积的计算的应用,解答本题的关键是熟练掌握扇形面积计算公式,此题难度一般.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.如图,△ABC中,AB=m,BC=n(m、n为常数,n<m).点D是AB上的一点,且∠DCB=∠A,过点D作DE∥BC于点E.
(1)若m=8,n=4,试求BD;
(2)设△AED与△BCD的周长和为C,△ABC的周长为l.
探究:$\frac{C}{l}$的值是否存在最大或最小值?若存在,请求出这个值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如果$\sqrt{y-3}$与(2x-4)2互为相反数,那么2x-y的平方根是±1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,有以下3个条件:①AC=AB,②AB∥CD,③∠1=∠2,从这3个条件中任选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.若a是33的立方根,$\sqrt{{4}^{2}}$的平方根是b,则$\sqrt{a+b}$=$\sqrt{5}$或1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列计算正确的是(  )
A.$\sqrt{2}$+$\sqrt{3}$=$\sqrt{5}$B.(-3)2=6C.(-a32=a6D.a2+a3=a5

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,⊙O的半径为5,点P是弦AB延长线上的一点,连接OP,若OP=8,∠P=30°,则弦AB的长为6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y=$\frac{k}{x}$(k≠0)的图象在第二象限交于点C,CE⊥x轴,垂足为点E,sin∠ABO=$\frac{\sqrt{5}}{5}$,OB=2,OE=1.
(1)求反比例函数的解析式;
(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF,如果S△BAF=4S△DFO,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.计算:-22+(-$\frac{1}{3}$)-1+2sin60°-|1-$\sqrt{3}$|

查看答案和解析>>

同步练习册答案