精英家教网 > 初中数学 > 题目详情
(2001•武汉)已知:圆内接四边形ABCD中,对角线AC⊥BD,AB>CD.若CD=4,则AB的弦心距为( )
A.
B.2
C.
D.
【答案】分析:设AC和BD的交点是O.过点O作GH⊥CD于G,交AB于H.
根据等角的余角相等以及圆周角定理可以证明点H是AB的中点.
再过点O作MN⊥AB于M,交CD于点N.同样可以证明N是CD的中点.
设该圆的圆心是O′,连接O′N、O′H.根据垂径定理的推论,得O′N⊥CD,O′H⊥AB.
则O′N∥GH,O′H∥MN,则四边形O′NOH是平行四边形,则O′H=ON=CD=2.
解答:解:如图,设AC与BD的交点为O,过点O作GH⊥CD于G,交AB于H;作MN⊥AB于M,交CD于点N.
在Rt△COD中,∠COD=90°,OG⊥CD;
∴∠DOG=∠DCO;
∵∠GOD=∠BOH,∠DCO=∠ABO,
∴∠ABO=∠BOH,即BH=OH,同理可证,AH=OH;
即H是Rt△AOB斜边AB上的中点.
同理可证得,M是Rt△COD斜边CD上的中点.
设圆心为O′,连接O′M,O′H;则O′M⊥CD,O′H⊥AB;
∵MN⊥AB,GH⊥CD;
∴O′H∥MN,OM∥GH;即四边形O′HOM是平行四边形;
因此OM=O′H.由于OM是Rt△OCD斜边CD上的中线,所以OM=O′H=CD=2.
故选B.
点评:此题综合运用了等角的余角相等以及等弧所对的圆周角相等,发现垂直于一边的直线,和另一边的交点正好是它的中点.再根据垂径定理的推论,得到垂直,发现平行四边形.根据平行四边形的对边相等,即可求解.
练习册系列答案
相关习题

科目:初中数学 来源:2001年湖北省武汉市中考数学试卷(解析版) 题型:解答题

(2001•武汉)已知:如图,在直角坐标系xoy中,以x轴的负半轴上一点H为圆心作⊙O与x轴交于A、B两点,与y轴交于C、D两点.以C为圆心、OC为半径作⊙C与⊙H交于F、F两点,与y轴交于O、Q两点.直线EF与AC、BC、y轴分别于M、N、G三点.直线经过A、C两点.
(1)求tan∠CNM的值;
(2)连接OM、ON,问:四边形CMON是怎样的四边形?请说明理由.
(3)如图,R是⊙C中弧EQ上的一动点(不与E点重合),过R作⊙C的切线RT,若RT与⊙H相交于S、T不同两点.问:CS•CT的值是否发生变化?若不变,请说明理由,并求其值;若变化,请求其值的变化范围.

查看答案和解析>>

科目:初中数学 来源:2001年湖北省武汉市中考数学试卷(解析版) 题型:解答题

(2001•武汉)已知:如图,⊙O1和⊙O2相交于A、B两点,过B点作⊙O1的切线交⊙O2于D点,连接DA并延长⊙O1相交于C点,连接BC,过A点作AE∥BC与⊙O相交于E点,与BD相交于F点.
(1)求证:EF•BC=DE•AC;
(2)若AD=3,AC=1,,求EF的长.

查看答案和解析>>

科目:初中数学 来源:2001年湖北省武汉市中考数学试卷(解析版) 题型:解答题

(2001•武汉)已知,求的值.

查看答案和解析>>

科目:初中数学 来源:2001年湖北省武汉市中考数学试卷(解析版) 题型:选择题

(2001•武汉)已知:⊙O的内接四边形ABCD中,AB是⊙O的直径,∠BCD=120°.过D点的切线PD与BA的延长线交于P点,则∠ADP的度数是( )

A.15°
B.30°
C.45°
D.60°

查看答案和解析>>

同步练习册答案