精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC内接于⊙OBAC=120°,AB=ACBD为⊙O的直径,AD=6,求弦DC的长.

【答案】

【解析】

根据直径所对的圆周角是直角可得∠BAD=∠BCD=90°;然后求出∠CAD=30°,利用同弧所对的圆周角相等求出∠CBD=∠CAD=30°;根据圆内接四边形对角互补求出∠BDC=60°;再根据等弦所对的圆周角相等求出∠ADB=∠ADC,从而求出∠ADB=30°;解直角三角形求出BD;再根据直角三角形30°角所对的直角边等于斜边的一半解答即可.

解:∵BD为⊙O的直径,

∴∠BAD=BCD=90°,

∵∠BAC=120°,

∴∠CAD=120°﹣90°=30°,

∴∠CBD=CAD=30°,

又∵∠BAC=120°,

∴∠BDC=180°﹣BAC=180°﹣120°=60°,

AB=AC

∴∠ADB=ADC

∴∠ADB=BDC=×60°=30°,

RtABD中,AB=AD=×6=2 BD=2AB=4

RtBCD中,CD= BD=2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,D是等边ABC边AD上的一点,且AD:DB=1:2,现将ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC、BC上,则CE:CF=( )

A、 B、 C、 D、

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线 yx2+bx+c y 轴交于点 C x 轴交于点 A 和点B其中点 A y 轴左侧 B y 轴右侧),对称轴直线 x x 轴于点 H

(1)若抛物线y=x2+bx+c经过点(﹣4,6),求抛物线的解析式;

(2)如图1,∠ACB=90°,点P是抛物线y=x2+bx+c上位于y轴右侧的动点,且 SABP=SABC,求点 P 的坐标;

(3)如图 2,过点AAQ∥BC交抛物线于点Q,若点Q的纵坐标为﹣c, 求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合.

1三角尺旋转了

2连接CD,试判断CBD的形状;

3BDC的度数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为半圆O的直径,AC是⊙O的一条弦,D的中点,作DEAC,交AB的延长线于点F,连接DA

1)求证:EF为半圆O的切线;

2)若DA=DF=,求阴影区域的面积.(结果保留根号和π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1,点P是等边△ABC内一点,已知PA=3,PB=4,PC=5,求∠APB的度数.

要直接求∠A的度数显然很因难,注意到条件中的三边长恰好是一组勾股数,因此考虑借助旋转把这三边集中到一个三角形内,如图2,作∠PAD=60°使ADAP,连接PDCD,则△PAD是等边三角形.

   ADAP=3,∠ADP=∠PAD=60°

∵△ABC是等边三角形

ACAB,∠BAC=60°

∴∠BAP   

∴△ABP≌△ACD

BPCD=4,   =∠ADC

∵在△PCD中,PD=3,PC=5,CD=4,PD2+CD2PC2

∴∠PDC   °

∴∠APB=∠ADC=∠ADP+∠PDC=60°+90°=150°

(2)如图3,在△ABC中,ABBC,∠ABC=90°,点P是△ABC内一点,PA=1,PB=2,PC=3,求∠APB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,AB,DC的延长线交于点E.

(1)求证:AC平分∠DAB;

(2)BE=3,CE=3,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某农场学校积极开展阳光体育活动,组织了九年级学生定点投篮,规定每人投篮3次.现对九年级(1)班每名学生投中的次数进行统计,绘制成如下的两幅统计图,根据图中提供的信息,回答下列问题.

(1)求出九年级(1)班学生人数;

(2)补全两个统计图;

(3)求出扇形统计图中3次的圆心角的度数;

(4)若九年级有学生200人,估计投中次数在2次以上(包括2次)的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线上部分点的横坐标 纵坐标的对应值如下表:

0

1

2

0

4

6

6

4

从上表可知,下列说法正确的是

①抛物线与轴的一个交点为; ②抛物线与轴的交点为

③抛物线的对称轴是:直线;   在对称轴左侧增大而增大.

查看答案和解析>>

同步练习册答案