【题目】如图1,点A、D是抛物线上两动点,点B、C在x轴上,且四边形ABCD是矩形,点E是抛物线与y轴的交点,连接BE交AD于点F,AD与y轴的交点为点G.设点A的横坐标为a(0<a<1).
(1) 若矩形ABCD的周长为3.5,求a的值;
(2) 求证:不论点A如何运动,∠EAD=∠ABE;
(3) 若△ABE是等腰三角形,
①求点A的坐标;
②如图2,若将直线BA绕点B按逆时针方向旋转至直线l,设点A、C到直线l的距离分别为、,求的最大值.
图1 图2
【答案】(1)a=0.5;(2) 见解析; (3)( , )
【解析】试题分析:(1)由题意y轴是抛物线的对称轴,也是矩形ABCD的对称轴,根据矩形的周长列出方程即可解决问题;
(2)如图1中,首先构建二次函数证明再证明四点共圆,即可解决问题;
(3)①观察图形可知当是等腰三角形时,只有在中,根据 可得求出即可解决问题.
②如图3中,过点A作AM∥直线, 直线于, 直线于,延长 交于.则四边形是矩形,由推出 欲求的最大值,只要求的最大值即可,点与点重合时的值最大.
试题解析:(1)由题意轴是抛物线的对称轴,也是矩形ABCD的对称轴,
∴关于轴对称,
由题意
解得或(舍去),
(2)如图1中,
∴直线EB的解析式为
直线DE的解析式为
设BD交OE于P,
∵PG∥AB,
四点共圆,
= ,
(3)观察图形可知当是等腰三角形时,只有
在中,
解得或(舍弃),
∴点
②如图3中,过点A作AM∥直线, 直线于, 直线于,延长 交于.则四边形是矩形,
欲求
在中,
∴当点与点重合时的值最大,此时
的最大值
科目:初中数学 来源: 题型:
【题目】尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;
Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.
如图是按上述要求排乱顺序的尺规作图:
则正确的配对是( )
A. ①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B. ①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣Ⅰ
C. ①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D. ①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,射线从的位置开始绕点按顺时针方向旋转,速度是每秒,同时射线从的位置开始绕点按逆时针方向旋转,速度是每秒,设旋转时间为秒.
(1)用含的代数式表示和的度数;
(2)在旋转过程中,当等于时,求的值;
(3)在旋转过程中是否存在这样的,使得射线恰好是图中某个角的平分线?如果存在,请求出的值;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,已知直线AB的函数解析式为y=﹣2x+8,与x轴交于点A,与y轴交于点B.
(1)求A、B两点的坐标;
(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF⊥y轴于点F,连接EF,问:
①若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围;
②是否存在点P,使EF的值最小?若存在,求出EF的最小值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】化简求值:
(1)当a=﹣1,b=2时,求代数式﹣2(ab﹣3b2)﹣[6b2﹣(ab﹣a2)]的值
(2)先化简,再求值:4xy﹣2(x2﹣3xy+2y2)+3(x2﹣2xy),当(x﹣3)2+|y+1|=0,求式子的值
(3)若(2mx2﹣x+3)﹣(3x2﹣x﹣4)的结果与x的取值无关,求m的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了全面提高学生的能力,学校组织课外活动小组,并要求初一学年积极参加,初一学年共有四个班,参加的学生共有(6a﹣3b)人,其中一班有a人参加,二班参加的人数比一班参加的人数两倍少b人,三班参加的人数比二班参加的人数一半多1人.
(1)求三班的人数(用含a,b的式子表示);
(2)求四班的人数(用含a,b的式子表示);
(3)若四个班共54人参加了课外活动,求二班比三班多多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数的图象分别与轴、轴交于两点,正比例函数的图象与交于点.
(1)求点坐标;
(2)求的表达式;
(3)求和的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知O是直线AB上一点,∠BOC<90°,三角板(MON)的直角顶点落在点O处现将三角板绕着点O旋转,并保持OM和OC在直线AB的同一侧.
(1)若∠BOC=50°
①当OM平分∠BOC时,求∠AON的度数.
②当OM在∠BOC内部,且∠AON=3∠COM时,求∠CON的度数:
(2)当∠COM=2∠AON时,请画出示意图,猜想∠AOM与∠BOC的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2017年上半年抚州市各级各类中小学(含中等职业学校)开展了“万师访万家”活动.某县家访方式有:A.上门走访;B.电话访问;C.网络访问(班级微信或QQ群);D.其他.该县教育局负责人从“万师访万家”平台上随机抽取本县一部分老师的家访情况,绘制了如图所示两幅尚不完整的统计图.
根据图中提供的信息,解答下列问题:
(1)这次被抽查的家访老师共有多少人?扇形统计图中,“A”所对应的圆心角的度数为多少?
(2)请补全条形统计图.
(3)已知该县共有3500位老师参与了这次“万师访万家”活动,请估计该县共有多少位老师采用的是上门走访的方式进行家访的?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com