精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,正方形ABCD中,P是边BC上一点,BEAP,DFAP,垂足分别是点E、F.

(1)求证:EF=AE﹣BE;

(2)联结BF,如课=.求证:EF=EP.

【答案】(1)证明见解析;(2)证明见解析.

【解析】

1)利用正方形的性质得AB=AD,BAD=90°,根据等角的余角相等得到∠1=3,则可判断ABE≌△DAF,则BE=AF,然后利用等线段代换可得到结论;

(2)利用AF=BE得到,则可判定RtBEFRtDFA,所以∠4=3,再证明∠4=5,然后根据等腰三角形的性质可判断EF=EP.

(1)∵四边形ABCD为正方形,

AB=AD,BAD=90°,

BEAP,DFAP,

∴∠BEA=AFD=90°,

∵∠1+2=90°,2+3=90°,

∴∠1=3,

ABEDAF

∴△ABE≌△DAF,

BE=AF,

EF=AE﹣AF=AE﹣BE;

(2)如图,∵

AF=BE,

RtBEFRtDFA,

∴∠4=3,

而∠1=3,

∴∠4=1,

∵∠5=1,

∴∠4=5,

BE平分∠FBP,

BEEP,

EF=EP.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,2).将矩形OABC绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场进行有奖促销活动,规定顾客购物达到一定金额就可以获得一次转动转盘的机会(如图),当转盘停止转动时指针落在哪一区域就可获得相应的奖品(若指针落在两个区域的交界处,则重新转动转盘).

转动转盘的次数n

100

150

200

500

800

1000

落在“10元兑换券的次数m

68

111

136

345

564

701

落在“10元兑换券的频率

0.68

a

0.68

0.69

b

0.701

(1)a的值为   ,b的值为   

(2)假如你去转动该转盘一次,获得“10元兑换券的概率约是   ;(结果精确到0.01)

(3)根据(2)的结果,在该转盘中表示“20元兑换券区域的扇形的圆心角大约是多少度?(结果精确到1°)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ΔABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交ABAC于点MN.再分别以点MN为圆心,大于MN的长为半径画弧,两弧交于P点,连接AP并延长交BC于点D,则下列说法中:①AD是∠BAC的平分线;②∠ADC=60°;③点DAB中点的连线垂直平分AB;④SΔDAC:SΔABC=1:3;正确的是( )

A.①③B.②④C.①②③D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】八年级(1)班同学上数学活动课,利用角尺平分一个角(如图).设计了如下方案:

(Ⅰ)∠AOB是一个任意角,将角尺的直角顶点P介于射线OA,OB之间,移动角尺使角尺两边相同的刻度与M,N重合,PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.

(Ⅱ)∠AOB是一个任意角,在边OA,OB上分别取OM=ON,将角尺的直角顶点P介于射线OA,OB之间,移动角尺使角尺两边相同的刻度与M,N重合,PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.

(1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由.

(2)在方案(Ⅰ)PM=PN的情况下,继续移动角尺,同时使PM⊥OA,PN⊥OB.此方案是否可行?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:在△ABC中,点D,E,F分别是边AB,BC,CA上的动点,若△DEF∽△ABC(点D、E、F的对应点分别为点A、B、C),则称△DEF△ABC的子三角形,如图.

(1)已知:如图1,△ABC是等边三角形,点D,E,F分别是边AB,BC,CA上动点,且AD=BE=CF.

求证:△DEF△ABC的子三角形.

(2)已知:如图2,△DEF△ABC的子三角形,且AB=AC,∠A=90°,若BE=,求CFAD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个钝角三角形中,如果一个角是另一个角的3倍,这样的三角形我们称之为智慧三角形.如,三个内角分别为120°,40°,20°的三角形是智慧三角形”.如图,∠MON=60°,在射线OM上找一点A,过点AABOMON于点B,以A为端点作射线AD,交射线OB于点C.

(1)ABO的度数为_____°,AOB_____(填不是”) “智慧三角形”;

(2)若∠OAC=20°,求证:△AOC智慧三角形”;

(3)当△ABC智慧三角形时,求∠OAC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,解答问题

(2x﹣5)2+(3x+7)2=(5x+2)2

解:设m=2x﹣5,n=3x+7,则m+n=5x+2

则原方程可化为m2+n2=(m+n)2

所以mn=0,即(2x﹣5)(3x+7)=0

解之得,x1=,x2=﹣

请利用上述方法解方程(4x﹣5)2+(3x﹣2)2=(x﹣3)2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°,∠ABC=30°,CD平分∠ACB


1)尺规作图:作线段AB的垂直平分线l
(要求:保留作图痕迹,不写作法)
2)记直线lABCD的交点分别是点EF.当AC=4时,求EF的长.

查看答案和解析>>

同步练习册答案