【题目】已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足分别是点E、F.
(1)求证:EF=AE﹣BE;
(2)联结BF,如课=.求证:EF=EP.
【答案】(1)证明见解析;(2)证明见解析.
【解析】
(1)利用正方形的性质得AB=AD,∠BAD=90°,根据等角的余角相等得到∠1=∠3,则可判断△ABE≌△DAF,则BE=AF,然后利用等线段代换可得到结论;
(2)利用和AF=BE得到,则可判定Rt△BEF∽Rt△DFA,所以∠4=∠3,再证明∠4=∠5,然后根据等腰三角形的性质可判断EF=EP.
(1)∵四边形ABCD为正方形,
∴AB=AD,∠BAD=90°,
∵BE⊥AP,DF⊥AP,
∴∠BEA=∠AFD=90°,
∵∠1+∠2=90°,∠2+∠3=90°,
∴∠1=∠3,
在△ABE和△DAF中
,
∴△ABE≌△DAF,
∴BE=AF,
∴EF=AE﹣AF=AE﹣BE;
(2)如图,∵,
而AF=BE,
∴,
∴,
∴Rt△BEF∽Rt△DFA,
∴∠4=∠3,
而∠1=∠3,
∴∠4=∠1,
∵∠5=∠1,
∴∠4=∠5,
即BE平分∠FBP,
而BE⊥EP,
∴EF=EP.
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,2).将矩形OABC绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场进行有奖促销活动,规定顾客购物达到一定金额就可以获得一次转动转盘的机会(如图),当转盘停止转动时指针落在哪一区域就可获得相应的奖品(若指针落在两个区域的交界处,则重新转动转盘).
转动转盘的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“10元兑换券”的次数m | 68 | 111 | 136 | 345 | 564 | 701 |
落在“10元兑换券”的频率 | 0.68 | a | 0.68 | 0.69 | b | 0.701 |
(1)a的值为 ,b的值为 ;
(2)假如你去转动该转盘一次,获得“10元兑换券”的概率约是 ;(结果精确到0.01)
(3)根据(2)的结果,在该转盘中表示“20元兑换券”区域的扇形的圆心角大约是多少度?(结果精确到1°)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ΔABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB、AC于点M、N.再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于P点,连接AP并延长交BC于点D,则下列说法中:①AD是∠BAC的平分线;②∠ADC=60°;③点D与AB中点的连线垂直平分AB;④SΔDAC:SΔABC=1:3;正确的是( )
A.①③B.②④C.①②③D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】八年级(1)班同学上数学活动课,利用角尺平分一个角(如图).设计了如下方案:
(Ⅰ)∠AOB是一个任意角,将角尺的直角顶点P介于射线OA,OB之间,移动角尺使角尺两边相同的刻度与M,N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.
(Ⅱ)∠AOB是一个任意角,在边OA,OB上分别取OM=ON,将角尺的直角顶点P介于射线OA,OB之间,移动角尺使角尺两边相同的刻度与M,N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.
(1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由.
(2)在方案(Ⅰ)PM=PN的情况下,继续移动角尺,同时使PM⊥OA,PN⊥OB.此方案是否可行?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:在△ABC中,点D,E,F分别是边AB,BC,CA上的动点,若△DEF∽△ABC(点D、E、F的对应点分别为点A、B、C),则称△DEF是△ABC的子三角形,如图.
(1)已知:如图1,△ABC是等边三角形,点D,E,F分别是边AB,BC,CA上动点,且AD=BE=CF.
求证:△DEF是△ABC的子三角形.
(2)已知:如图2,△DEF是△ABC的子三角形,且AB=AC,∠A=90°,若BE=,求CF和AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个钝角三角形中,如果一个角是另一个角的3倍,这样的三角形我们称之为“智慧三角形”.如,三个内角分别为120°,40°,20°的三角形是“智慧三角形”.如图,∠MON=60°,在射线OM上找一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交射线OB于点C.
(1)∠ABO的度数为_____°,△AOB_____(填“是”或“不是”) “智慧三角形”;
(2)若∠OAC=20°,求证:△AOC为“智慧三角形”;
(3)当△ABC为“智慧三角形”时,求∠OAC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料,解答问题
(2x﹣5)2+(3x+7)2=(5x+2)2
解:设m=2x﹣5,n=3x+7,则m+n=5x+2
则原方程可化为m2+n2=(m+n)2
所以mn=0,即(2x﹣5)(3x+7)=0
解之得,x1=,x2=﹣
请利用上述方法解方程(4x﹣5)2+(3x﹣2)2=(x﹣3)2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,CD平分∠ACB.
(1)尺规作图:作线段AB的垂直平分线l;
(要求:保留作图痕迹,不写作法)
(2)记直线l与AB,CD的交点分别是点E,F.当AC=4时,求EF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com