精英家教网 > 初中数学 > 题目详情

【题目】如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,2).将矩形OABC绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为_____

【答案】(-2,6)

【解析】

连接OB1,作B1HOAH,证明AOB≌△HB1O,得到B1H=OA=6,OH=AB=2,得到答案.

连接OB1,作B1HOAH,

由题意得,OA=6,AB=OC-2

tanBOA=

∴∠BOA=30°,

∴∠OBA=60°,

由旋转的性质可知,∠B1OB=BOA=30°,

∴∠B1OH=60°,

AOBHB1O,

∴△AOB≌△HB1O,

B1H=OA=6,OH=AB=2

∴点B1的坐标为(-2,6),

故答案为:(-2,6).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AD是△ABC的角平分线,DFAB,垂足为FDE=DG,△ADG和△AED的面积分别为5040,则△EDF的面积为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,分别以AB、BC为一边向外作正方形ABFG、BCED,连接AD、CF,ADCF交于点M,ABCF交于点H.

(1)求证:△ABD≌△FBC;

(2)已知AD=6,求四边形AFDC的面积;

(3)在△ABC中,设BC=a,AC=b,AB=c,当∠ACB≠90°时,c≠a+b.在任意△ABC中,c=a+b+k.a=3,b=2的情形,探究k的取值范围(只需写出你得到的结论即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:

甲:9,10,8,5,7,8,10,8,8,7;

乙:5,7,8,7,8,9,7,9,10,10;

丙:7,6,8,5,4,7,6,3,9,5.

(1)根据以上数据求出表中a,b,c的值;

平均数

中位数

方差

8

8

b

a

8

2.2

6

c

3

(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;

(3)比赛时三人依次出场,顺序由抽签方式决定,用列举法求甲、乙相邻出场的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形ABCD中,∠DAB=B=C=D=90°,AD=BC=6 AB=CD=10.点E为射线DC上的一个动点,△ADE与△ADE关于直线AE对称,当△ADB为直角三角形时,DE的长为(  )

A.28B.18C.2D.218

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则BCG的周长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,若OBC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为(  )

A. B. C. 34 D. 10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法中正确的是(  ).

A. “打开电视机,正在播放《动物世界》”是必然事件

B. 某种彩票的中奖概率为,说明每买1000张,一定有一张中奖

C. 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为

D. 想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,正方形ABCD中,P是边BC上一点,BEAP,DFAP,垂足分别是点E、F.

(1)求证:EF=AE﹣BE;

(2)联结BF,如课=.求证:EF=EP.

查看答案和解析>>

同步练习册答案