【题目】在一个钝角三角形中,如果一个角是另一个角的3倍,这样的三角形我们称之为“智慧三角形”.如,三个内角分别为120°,40°,20°的三角形是“智慧三角形”.如图,∠MON=60°,在射线OM上找一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交射线OB于点C.
(1)∠ABO的度数为_____°,△AOB_____(填“是”或“不是”) “智慧三角形”;
(2)若∠OAC=20°,求证:△AOC为“智慧三角形”;
(3)当△ABC为“智慧三角形”时,求∠OAC的度数.
【答案】(1)30;是;(2)证明见解析;(3)∠OAC的度数为80°或52.5°.
【解析】
(1)根据垂直的定义、三角形内角和定理求出∠ABO的度数,根据“智慧三角形”的概念判断;
(2)根据“智慧三角形”的概念证明即可;
(3)分∠ABC=3∠BAC、∠BCA=3∠BAC两种情况,根据“智慧三角形”的定义计算.
(1)∵AB⊥OM,∴∠OAB=90°,∴∠ABO=90°﹣∠MON=30°.
∵∠OAB=3∠ABO,∴△AOB为“智慧三角形”.
故答案为:30;是;
(2)∠AOC=60°,∠OAC=20°,∴∠AOC=3∠OAC,∴△AOC为“智慧三角形”;
(3)∵∠ABO=30°,∴∠BAC+∠BCA=150°.
∵△ABC为“智慧三角形”,当∠ABC=3∠BAC时,∠BAC=10°,∴∠OAC=90°-10°=80°;
当∠BCA=3∠BAC时,∠BAC=37.5°,∴∠OAC=90°-37.5°=52.5°.
综上:当△ABC为“智慧三角形”时,求∠OAC的度数为80°或52.5°.
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2﹣(2m+1)+( m2﹣1).
(1)求证:不论m取什么实数,该二次函数图象与x轴总有两个交点;
(2)若该二次函数图象经过点(2m﹣2,﹣2m﹣1),求该二次函数的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.
(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;
(2)小明选择哪家快递公司更省钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,对角线AC=2 ,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B′处,则AB= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们在学习“实数”时,画了这样一个图,即“以数轴上的单位长为‘1’的线段作一个正方形,然后以原点O为圆心,正方形的对角线长为半径画弧交x轴于点A”,请根据图形回答下列问题:
(1)线段OA的长度是多少?(要求写出求解过程)
(2)这个图形的目的是为了说明什么?
(3)这种研究和解决问题的方式,体现了 的数学思想方法.(将下列符合的选项序号填在横线上)
A、数形结合;B、代入;C、换元;D、归纳.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,∠BAC=2∠DAE=2α.
(1)如图1,若点D关于直线AE的对称点为F,求证:△ADF∽△ABC;
(2)如图2,在(1)的条件下,若α=45°,求证:DE2=BD2+CE2;
(3)如图3,若α=45°,点E在BC的延长线上,则等式DE2=BD2+CE2还能成立吗?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com