精英家教网 > 初中数学 > 题目详情

【题目】如图,∠BAD=CBE=ACF,FDE=64°,DEF=43°,求△ABC各内角的度数.

【答案】ABC各内角的度数分别为64°、43°、73°.

【解析】

根据三角形外角性质得到∠FDE=BAD+∠ABD而∠BAD=CBE则∠FDE=BAD+∠CBE=ABC=64°;同理可得∠DEF=ACB=43°,然后根据三角形内角和定理计算∠BAC=180°﹣ABCACB即可

∵∠FDE=BAD+∠ABDBAD=CBE∴∠FDE=BAD+∠CBE=ABC∴∠ABC=64°;

同理DEF=FCB+∠CBE=FCB+∠ACF=ACB∴∠ACB=43°;

∴∠BAC=180°﹣ABCACB=180°﹣64°﹣43°=73°,∴△ABC各内角的度数分别为64°、43°、73°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2+bx+c的图象与直线y=x+1相交于点A(﹣1,m)和点B(n,5).
(1)求该二次函数的关系式;
(2)在给定的平面直角坐标系中,画出这两个函数的大致图象;
(3)结合图象直接写出x2+bx+c>x+1时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E为BC边的中点,连接DE.
(1)求证:DE与⊙O相切.
(2)若tanC= ,DE=2,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AB=10,BC=13,CD=12,AD=5,AD⊥CD,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将△ABC沿DEEF翻折,顶点AB均落在点O处,且EAEB重合于线段EO,若∠CDO+∠CFO=100°,则∠C的度数为(  )

A. 40° B. 41° C. 42° D. 43°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个钝角三角形中,如果一个角是另一个角的3倍,这样的三角形我们称之为智慧三角形.如,三个内角分别为120°,40°,20°的三角形是智慧三角形”.如图,∠MON=60°,在射线OM上找一点A,过点AABOMON于点B,以A为端点作射线AD,交射线OB于点C.

(1)ABO的度数为_____°,AOB_____(填不是”) “智慧三角形”;

(2)若∠OAC=20°,求证:△AOC智慧三角形”;

(3)当△ABC智慧三角形时,求∠OAC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=BC,ACB=90°,点D、E在AB上,将ACDBCE分别沿CD、CE翻折,点A、B分别落在点A′、B′的位置,再将A′CDB′CE分别沿A′C、B′C翻折,点D与点E恰好重合于点O,则A′OB′的度数是( )

A.90° B.120° C.135° D.150°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学数学活动小组为了调查居民的用水情况,从某社区的1500户家庭中随机抽取了30户家庭的月用水量,结果如下表所示:

月用水量(吨)

3

4

5

7

8

9

10

户 数

4

3

5

11

4

2

1

(1)求这30户家庭月用水量的平均数,众数和中位数;

(2)根据上述数据,试估计该社区的月用水量;

(3)由于我国水资源缺乏,许多城市常利用分段计费的办法引导人们节约用水,即规定每个家庭的月基本用水量为m(吨),家庭月用水量不超过m(吨)的部分按原价收费,超过m吨部分加倍收费,你认为上述问题中的平均数、众数、中位数中哪一个量作为月基本用水量比较合理?简述理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某次篮球联赛初赛阶段,每队场比赛,每场比赛都要分出胜负,每队胜一场分, 负一场得分,积分超过分才能获得参赛资格.

(1)已知甲队在初赛阶段的积分为分,甲队初赛阶段胜、负各多少场;

(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?

查看答案和解析>>

同步练习册答案