精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数y=x2+bx+c的图象与直线y=x+1相交于点A(﹣1,m)和点B(n,5).
(1)求该二次函数的关系式;
(2)在给定的平面直角坐标系中,画出这两个函数的大致图象;
(3)结合图象直接写出x2+bx+c>x+1时x的取值范围.

【答案】
(1)解:∵二次函数y=x2+bx+c的图象与直线y=x+1相交于点A(﹣1,m)和点B(n,5),

∴m﹣1+1=0,n=1=5,即n=4,

∴点A(﹣1,0),点B(4,5),

解得

∴二次函数的吉祥物为y=x2﹣2x﹣3


(2)解:这两个函数图象如图所示,


(3)解:由图象可知,x2+bx+c>x+1时,x<﹣1或x>4
【解析】(1)首先求出A、B两点坐标,利用待定系数法即可解决问题.(2)利用描点法画出函数图象即可.(3)根据图象二次函数的图象在一次函数的图象上方,即可写出自变量的取值范围.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图①,在长方形ABCD中,AB=10cm,BC=8cm、点PA出发,沿A、B、C、D路线运动,到D停止;点P的速度为每秒1cm,a秒时点P的速度变为每秒bcm,图②是点P出发x秒后,APD的面积S1(cm2)与x(秒)的函数关系图象

(1)根据图②中提供的信息,求a、b及图②中c的值;

(2)设点P离开点A的路程为y(cm),请写出动点P改变速度后y与出发后的运动时间x(秒)的函数关系式;

(3)点P出发后几秒,APD的面积S1是长方形ABCD面积的

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB= ,反比例函数y= 在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,操场上有一根旗杆AH,为测量它的高度,在B和D处各立一根高1.5米的标杆BC、DE,两杆相距30米,测得视线AC与地面的交点为F,视线AE与地面的交点为G,并且H、B、F、D、G都在同一直线上,测得BF为3米,DG为5米,求旗杆AH的高度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长分别为2和4的两个全等三角形,开始它们在左边重叠,大△ABC固定不动,然后把小△A′B′C′自左向右平移,直至移到点B′到C重合时停止,设小三角形移动的距离为x,两个三角形的重合部分的面积为y,则y关于x的函数图象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2﹣(2m+1)+( m2﹣1).
(1)求证:不论m取什么实数,该二次函数图象与x轴总有两个交点;
(2)若该二次函数图象经过点(2m﹣2,﹣2m﹣1),求该二次函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,操场上有一根旗杆AH,为测量它的高度,在B和D处各立一根高1.5米的标杆BC、DE,两杆相距30米,测得视线AC与地面的交点为F,视线AE与地面的交点为G,并且H、B、F、D、G都在同一直线上,测得BF为3米,DG为5米,求旗杆AH的高度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.
(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,若“摸出的球是黑球”为必然事件,求m的值;
(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于 ,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠BAD=CBE=ACF,FDE=64°,DEF=43°,求△ABC各内角的度数.

查看答案和解析>>

同步练习册答案