精英家教网 > 初中数学 > 题目详情

【题目】如图,操场上有一根旗杆AH,为测量它的高度,在B和D处各立一根高1.5米的标杆BC、DE,两杆相距30米,测得视线AC与地面的交点为F,视线AE与地面的交点为G,并且H、B、F、D、G都在同一直线上,测得BF为3米,DG为5米,求旗杆AH的高度?

【答案】解:由题意知,设AH=x,BH=y, △AHF∽△CBF,△AHG∽△EDG,
= =
∴3x=1.5×(y+3),5x=1.5×(y+30+5)
解得x=24m.
答:旗杆AH的高度为24m
【解析】根据AH∥CB∥DE,可得△AHF∽△CBF,△AHG∽△EDG,可得 = = ,即可求得AH的值,即可解题.
【考点精析】本题主要考查了相似三角形的应用的相关知识点,需要掌握测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在处,折痕为EF,若,则的周长之和为  

A. 3 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列函数中,满足y的值随x的值增大而增大的是(
A.y=﹣2x
B.y=3x﹣1
C.y=
D.y=x2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.
(1)求证:△ABC是等边三角形;
(2)若∠PAC=90°,AB=2 ,求PD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论是 . (写出正确命题的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在海上观察所A,我边防海警发现正北5km的B处有一可疑船只正在向东方向12km的C处行驶.我边防海警即刻派船前往C处拦截.若可疑船只的行驶速度为60km/h,则我边防海警船的速度为多少时,才能恰好在C处将可疑船只截住?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2+bx+c的图象与直线y=x+1相交于点A(﹣1,m)和点B(n,5).
(1)求该二次函数的关系式;
(2)在给定的平面直角坐标系中,画出这两个函数的大致图象;
(3)结合图象直接写出x2+bx+c>x+1时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列计算不正确的是(
A.
B.
C.|3|=3
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AB=10,BC=13,CD=12,AD=5,AD⊥CD,求四边形ABCD的面积.

查看答案和解析>>

同步练习册答案