精英家教网 > 初中数学 > 题目详情
如图所示,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.
求证:AB=FC.
见解析
找到AB、FC所在的三角形,然后证明该三角形全等即可。由同角的余角相等可得∠A=∠F,又CB=CE,∠ACB=∠CEF,则△CEF≌△ACB,所以AB=FC
∵∠A=∠F,CB=CE,∠ACB=∠CEF,
∴△CEF≌△ACB(ASA),
则AB=FC
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,点D是线段BC的中点,分别以点B,C为圆心,BC长为半径画弧,两弧相交于点A,连接AB,AC,AD,点E为AD上一点,连接BE,CE.
(1)求证:BE=CE;
(2)以点E为圆心,ED长为半径画弧,分别交BE,CE于点F,G.若BC=4,∠EBD=30°,求图中阴影部分(扇形)的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,点B、F、C、E在同一直线上,BF=CE,AB⊥BE,DE⊥BE,垂足分别为B、E,联结AC、DF,∠A=∠D.
求证:AB=DE.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)如图,点A、B、C、D在同一条直线上,BE∥DF,∠A=∠F,AB=FD.求证:AE=FC.
(2)如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=5,tanC=,求腰AB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在平面上有一半径为1 cm的圆定点A,OA="4" cm.以点A为旋转中心,使圆O分别顺时针旋转90°,逆时针旋转60°,得到圆B和圆C,作出这两个圆.
(1)试问圆B或圆C的圆心与圆O的圆心O的距离是多少?
(2)试问圆B和圆C的圆心的距离是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

把一条12个单位长度的线段分成三条线段,其中一条线段长为4个单位长度,另两条线段长都是单位长度的整数倍.
(1)不同分法得到的三条线段能组成多少个不全等的三角形?用尺规作出这些三角形(用给定的单位长度,不写作法,保留作图痕迹);
(2)求出(1)中所作三角形外接圆的周长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在梯形ABCD中,AD∥BC,∠B=50°,∠C=80°,AE∥CD交BC于点E,若AD=2,BC=5,则边CD的长是
A.B.C.3D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,过正方形ABCD的顶点B作直线l,过点A,C作l的垂线,垂足分别为点E,F.若AE=2,CF=6,则AB的长度为        

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列长度的三条线段,能组成等腰三角形的是(   )
A.1,1,2B.2,2,5C.3,3,5D.3,4,5

查看答案和解析>>

同步练习册答案