精英家教网 > 初中数学 > 题目详情
9.在Rt△ABC中,∠ACB=Rt∠,M是边AB的中点,CH⊥AB于点H,CD平分∠ACB.
(1)求证:CD平分∠MCH;
(2)过点M作AB的垂线交CD的延长线于点E,求证:CM=EM;
(3)△AEM是什么三角形?证明你的猜想.

分析 (1)根据直角三角形斜边上的中线等于斜边的一半得到AM=CM=BM,由等腰三角形到性质得到∠CAB=∠ACM,由余角的性质得到∠CAB=∠BCH,等量代换得到∠BCH=∠ACM,根据角平分线的性质得到∠ACD=∠BCD,即可得到结论;
(2)根据EM⊥AB,CH⊥AB,得到EM∥AB,由平行线的性质得到∠HCD=∠MED,由于∠HCD=∠MCD,于是得到∠MCD=∠MED,即可得到结论;
(3)根据 CM=EM AM=CM=BM,于是得到EM=AM=BM,推出△AEB是直角三角形,由于 EM垂直平分AB,得到EA=EB于是得到结论.

解答 证明:(1)Rt△ABC中,∠ACB=90°,
∵M是AB边的中点,
∴AM=CM=BM,
∴∠CAB=∠ACM,
∴∠CAB=90-∠ABC,
∵CH⊥AB,
∴∠BCH=90-∠ABC,
∴∠CAB=∠BCH,
∴∠BCH=∠ACM,
∵CD平分∠ACB,
∴∠ACD=∠BCD,
∴∠ACD-∠ACM=∠BCD-∠BCH,
即∠MCD=∠HCD,
∴CD平分∠MCH;

(2)∵EM⊥AB,CH⊥AB,
∴EM∥CH,
∴∠HCD=∠MED,
∵∠HCD=∠MCD,
∴∠MCD=∠MED,
∴CM=EM;

(3)△AEB是等腰直角三角形,
∵CM=EM AM=CM=BM,
∴EM=AM=BM,
∴△AEB是直角三角形,
∵EM垂直平分AB,
∴EA=EB,
∴△AEB是等腰三角形,
∴△AEB是等腰直角三角形.

点评 本题考查了直角三角形斜边上的中线等于斜边的一半,等腰直角三角形的判定和性质,角平分线的定义,线段垂直平分线的性质,等腰三角形的性质,熟练掌握各定理是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.阅读下面的材料
已知三次方程x3+px2+qx+m=0有整数解t,其中p,q,m为整数.
将t代入方程有:t3+pt2+qt+m=0,移项并整理得:m=t×(-t2-pt-q),由于-t2-pt-q与m及t都是整数,所以m是t的倍数.
根据上面回答下列问题
(1)根据上面的推理过程,说明了系数为整数的三次方程x3+px2+qx+m=0的整数解只可能是m的因数(用文字描述)
(2)方程x3-2x2-4x+3=0是否有整数解?若有,请求出其整数解;若没有,请说明理由.
(3)解关于x的方程x3+4x2+3x-2=0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.请从以下两个小题中任选一个作答,若多选,则按第一题计分.
A.单项式-$\frac{{x}^{3}y}{3}$的系数是-$\frac{1}{3}$,次数是4,多项式-5xy3-6x2y3-3是五 次三项式.
B.水果市场上鸭梨包装箱上印有字样:“15kg±0.2kg”,有一箱鸭梨的质量为14.92kg,则这箱鸭梨符合标准.(选填“符合”或“不符合”)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.若方程ax=5+3x的解为x=5,则a等于(  )
A.80B.4C.16D.2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图所示,在长和宽分别是a、b的矩形纸片的四个角上都剪去一个边长为x的小正方形,折成一个无盖的纸盒.
(1)用a,b,x表示纸片剩余部分的面积;
(2)当a=16,b=12,且剪去部分的面积等于剩余部分的面积的一半时,求小正方形的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如果□×3a=-3a2b,则“□”内应填的代数式是(  )
A.-abB.-3abC.aD.-3a

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.一次函数y=kx+2(k为常数,且k≠0)的图象如图所示,则k的可能值为-2.(写一个即可)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.一个三位自然数m.将它任意两个数位上的数字对调后得一个首位不为0的新三位自然数m'(m'可以与m相同),记m'=$\overline{abc}$,在m’所有的可能情况中,当|a+2b-c|最小时,我们称此时的m’是m的“幸福美满数”,并规定K(m)=a2+2b2-c2.例如:318按上述方法可得新数有:381、813、138;因为|3+2×1-8|=3,|3+2×8-1|=18,|8+2×1-3|=7,|1+2×3-8|=1,1<3<7<18.所以138是318的“幸福美满数”.K(318)=12+2×32-82=-45.
(1)若三位自然数t的百位上的数字与十位上的数字都为n(1≤n≤9.n为自然数),个位上的数字为0,求证:K(t)=0;
(2)设三位自然数s=100+10x+y(1≤x≤9,1≤y≤9,x,y为自然数),且x<y,交换其个位与十位上的数字得到新数s',若19s+8s'=3888,那么我们称s为“梦想成真数”,求所有“梦想成真数”中K(s)的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.己知△ABC中,∠C=Rt∠,AC=3,BC=4,点P为边AB的中点,以点C为圆心,长度r为半径画圆,使得点A,P在⊙O内,点B在⊙C外,则半径r的取值范围是(  )
A.$\frac{5}{2}<r<4$B.$\frac{5}{2}<r<3$C.3<r<4D.r>3

查看答案和解析>>

同步练习册答案