精英家教网 > 初中数学 > 题目详情

【题目】ABC中,∠A90°,DBC的中点,EF分别在ABAC上,且DEDFBE2CF4,则EF的长为_____

【答案】2

【解析】

延长FD至点G,使得DGDF,连接BGEG,易证CDF≌△BDG,可得BGCF4,∠C=∠DBG,可证明∠ABG90°,再根据等腰三角形底边三线合一性质可得EFEG,即可求得EF的长,即可解题.

延长FD至点G,使得DGDF,连接BGEG

∵在CDFBDG中,

∴△CDF≌△BDGSAS),

BGCF4,∠C=∠DBG

∵∠C+ABC90°

∴∠DBG+ABC90°,即∠ABG90°

DEFGDFDG

EFEG

故答案为:2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在中,,点P从点B出发,以速度沿向点C运动,设点P的运动时间为t.

1_______.(用含t的代数式表示)

2)当点P从点B开始运动,同时,点Q从点C出发,以的速度沿向点A运动,当时,求v的值.

3)在(2)的条件下,求v的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知三个边长分别为1,2,3的正三角形从左到右如图排列,则图中阴影部分面积为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABCB90°AB4BC2AC为边作△ACEACE90°AC=CE延长BC至点D使CD5连接DE.求证ABC∽△CED

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程kx2+(3k+1)x+3=0.

(1)求证:无论k取任何实数时,方程总有实数根;

(2)若二次函数y=kx2+(3k+1)x+3的图象与x轴两个交点的横坐标均为整数,且k为正整数,求k值;

(3)在(2)的条件下,设抛物线的顶点为M,直线y=-2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1的小正方形组成的网格中,ABC的三个顶点均在格点上,请按要求完成下列各题:

1)画线段ADBC且使AD=BC,连接CD

2)线段AC的长为   CD的长为   AD的长为_____

3ACD   三角形,四边形ABCD的面积为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,A0a)、B(﹣b0),若b+4C点是B点关于y轴的对称点.

1)判断△ABC的形状并证明;

2P点在第一象限,且∠APC135°,试探究关于PAPBPC三条线段的确定数量关系;

3E点在BC上,F为线段AE的中点,EFE点顺时针旋转60°得到EGE点从B点沿BC运动到C点,求G点随E点运动的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某产品每件成本28元,在试销阶段产品的日销售量y(件)与每件产品的日销售价x(元)之间的关系如图中的折线所示.为维持市场物价平衡,最高售价不得高出83元.

(1)求y与x之间的函数关系式;

(2)要使每日的销售利润w最大,每件产品的日销售价应定为多少元?此时每日销售利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+3的图象过点A(-1,0),对称轴为过点(1,0)且与y轴平行的直线.

(1)求点B的坐标

(2)求该二次函数的关系式;

(3)结合图象,解答下列问题:

当x取什么值时,该函数的图象在x轴上方?

当-1<x<2时,求函数y的取值范围.

查看答案和解析>>

同步练习册答案