【题目】完成下面的推理.
已知:如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD.
试说明:∠EGF=90°.
解:因为HG∥AB(已知),
所以∠1=∠3( ).
又因为HG∥CD(已知),
所以∠2=∠4( ).
因为AB∥CD(已知),
所以∠BEF+ =180°( ).
又因为EG平分∠BEF(已知),
所以∠1=∠ ( ).
又因为FG平分∠EFD(已知),
所以∠2=∠ ( ),
所以∠1+∠2=( + ).
所以∠1+∠2=90°.
所以∠3+∠4=90°( ),即∠EGF=90°.
【答案】两直线平行,内错角相等;两直线平行,内错角相等;∠EFD;两直线平行,同旁内角互补;∠BEF;角平分线定义;∠EFD;角平分线定义;∠BEF;∠EFD;等量代换.
【解析】
依据平行线的性质和判定定理以及角平分线的定义,结合解答过程进行填空即可.
∵AB∥GH(已知),
∴∠1=∠3(两直线平行,内错角相等),
又∵CD∥GH(已知),
∴∠2=∠4(两直线平行,内错角相等).
∵AB∥CD(已知),
∴∠BEF+∠EFD=180°(两直线平行,同旁内角互补).
∵EG平分∠BEF(已知),
∴∠1=∠BEF(角平分线定义),
又∵FG平分∠EFD(已知),
∴∠2=∠EFD(角平分线定义),
∴∠1+∠2=(∠BEF+∠EFD),
∴∠l+∠2=90°,
∴∠3+∠4=90°(等量代换),
即∠EGF=90°.
故答案为:两直线平行,内错角相等;两直线平行,内错角相等;∠EFD;两直线平行,同旁内角互补;∠BEF;角平分线定义;∠EFD;角平分线定义;∠BEF;∠EFD;等量代换.
科目:初中数学 来源: 题型:
【题目】如图所示是鼎龙高速路口开往宁都方向的某汽车行驶的路程s(km)与时间t(分钟)的函数关系图,观察图中所提供的信息,解答下列问题:
(1)汽车在前6分钟内的平均速度是 千米/小时,汽车在兴国服务区停了多长时间? 分钟;
(2)当10≤t≤20时,求S与t的函数关系式;
(3)规定:高速公路时速超过120千米/小时为超速行驶,试判断当10≤t≤20时,该汽车是否超速,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店计划购进,两种型号的电机,其中每台型电机的进价比型多元,且用元购进型电机的数量与用元购进型电机的数量相等.
(1)求,两种型号电机的进价;
(2)该商店打算用不超过元的资金购进,两种型号的电机共台,至少需要购进多少台型电机?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.
(1)∵DE∥AB,( 已知 )
∴∠2= . ( , )
(2)∵DE∥AB,(已知 )
∴∠3= .( , )
(3)∵DE∥AB(已知 ),
∴∠1+ =180°.( , )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学课上,李老师出示了如下框中的题目.
在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图.试确定线段AE与DB的大小关系,并说明理由. |
小敏与同桌小聪讨论后,进行了如下解答:
(1)特殊情况,探索结论
当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:
AE DB(填“>”,“<”或“=”).
图1 图2
(2)特例启发,解答题目
解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).
理由如下:如图2,过点E作EF∥BC,交AC于点F.
(请你完成以下解答过程)
(3)拓展结论,设计新题
在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】张明和李强两名运动爱好者周末相约到东湖绿道进行跑步锻炼.(1)周日早上6点,张明和李强同时从家出发,分别骑自行车和步行到离家距离分别为4.5千米和1.2千米的绿道落雁岛入口汇合,结果同时到达,且张明每分钟比李强每分钟多行220米,求张明和李强的速度分别是多少米/分?
(1)两人到达绿道后约定先跑 6 千米再休息,李强的跑步速度是张明跑步速度的m倍,两人在同起点,同时出发,结果李强先到目的地n分钟.
①当m=12,n=5时,求李强跑了多少分钟?
②张明的跑步速度为 米/分(直接用含m,n的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:已知一次函数y=kx+b(k≠0)的图象与x轴、y轴的交点分别为A、B两点.且与反比例函数y=(m≠0)的图象在第一象限交于点C,CD垂直于x轴,垂足为D,若OA=OB=OD=1.
(1)一次函数和反比例函数的解析式;
(2)求△ACD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,点P是正方形ABCD内一点,连接PA、PB、PC.
(1)将△PAB绕点B顺时针旋转90°得到△P′CB,若AB=m,PB=n(n<m).求△PAB旋转过程中边PA扫过区域(阴影部分)的面积;
(2)若PA= ,PB=2,∠APB=135°,求PC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED=∠C.
(1)判断直线AC与圆O的位置关系,并证明你的结论;
(2)若AC=8,cos∠BED=,求AD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com