【题目】如图,四边形是矩形,点是边上一个动点,点,,是,,的中点.
(1)求证:;
(2)若四边形是正方形,求的值.
【答案】(1)证明见解析;(2).
【解析】
(1)由三角形中位线定理可得DM=EM=FN,MF=EN=CN,DF=CF,由“SSS”可证△DMF≌△FNC; (2)由正方形的性质可得EN=NF=EM=MF,NE⊥EM,可得DE=EC,可得∠EDC=∠ECD=45°,可证AD=AE,BC=BE,即可求AD:AB的值.
证明:(1)∵点F,M,N分别是DC,DE,CE的中点.
∴DM=EM=FN,MF=EN=CN,DF=CF
∴△DMF≌△FNC(SSS)
(2)∵四边形MENF是正方形.
∴EN=NF=EM=MF,NE⊥EM,
∴DE=EC ∴∠EDC=∠ECD=45°,
∵AB∥CD
∴∠AED=∠EDC=45°,∠BEC=∠ECD=45°
∴∠A=∠B=90° ∴∠AED=∠ADE=45°,
∠BEC=∠BCE=45°
∴AD=AE,BC=BE,
∴AB=AE+BE=2AD
∴AD:AB=1:2.
科目:初中数学 来源: 题型:
【题目】如图1,在等边三角形ABC中,CD为中线,点Q在线段CD上运动,将线段QA绕点Q顺时针旋转,使得点A的对应点E落在射线BC上,连接BQ,设∠DAQ=α
(0°<α<60°且α≠30°).
(1)当0°<α<30°时,
①在图1中依题意画出图形,并求∠BQE(用含α的式子表示);
②探究线段CE,AC,CQ之间的数量关系,并加以证明;
(2)当30°<α<60°时,直接写出线段CE,AC,CQ之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形中,,,点在边上,且.
探究:如图①,点在矩形的边上,连结,过点作,交边于点.求证:.
应用:如图②,若图①的交边于点.其它条件不变,连结,则的值为 ,若的面积是.则的长为
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与探究
问题情境
在综合实践课上,老师让同学们探究“平面直角坐标系中的旋转问题”.如图,在平面直角坐标系中,四边形是矩形,点,点,点.
操作发现
以点为中心,顺时针旋转矩形,得到矩形,点,,的对应点分别为,,.
(1)如图①,当点落在边上时,求点的坐标;
继续探究
(2)如图②,当点落在线段上时,与交于点.
①求证;
②求点的坐标.
拓展探究
(3)如图①,点是轴上任意一点,点是平面内任意一点,是否存在点使以、、、为顶点的四边形是菱形?若存在,请直接写出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】元旦期间,某宾馆有50个房间供游客居住,当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.
(1)若房价定为200元时,求宾馆每天的利润;
(2)房价定为多少时,宾馆每天的利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲乙两人轮流在黑板上写下不超过 的正整数(每次只能写一个数),规定禁止在黑板上写已经写过的数的约数,最后不能写的为失败者,如果甲写第一个,那么,甲写数字( )时有必胜的策略.
A. 10 B. 9 C. 8D.6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人用如图的两个分格均匀的转盘A、B做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:
(1)用列表格或画树状图的方法表示游戏所有可能出现的结果.
(2)求甲、乙两人获胜的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.
(1)AM= ,AP= .(用含t的代数式表示)
(2)当四边形ANCP为平行四边形时,求t的值
(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,
①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由
②使四边形AQMK为正方形,求 出AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,是由一些棱长为单位1的相同的小正方体组合成的简单几何体.
(1)图中有 个小正方体;
(2)请在图1右侧方格中分别画出几何体的主视图、左视图;
(3)不改变(2)中所画的主视图和左视图,最多还能在图1中添加 个小正方体.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com